📄 model.props
字号:
# Copyright 1999-2004 Carnegie Mellon University. # Portions Copyright 2004 Sun Microsystems, Inc. # Portions Copyright 2004 Mitsubishi Electronic Research Laboratories.# All Rights Reserved. Use is subject to license terms.# # See the file "license.terms" for information on usage and# redistribution of this file, and for a DISCLAIMER OF ALL # WARRANTIES.## Trained using entire channel 1 training data from WSJ (~32K utterances). # All the training data was downsampled to 8k:## sph2pipe -f raw ldc/$foo.wv1 > raw/$foo.raw# sox -t sw -r 16000 raw/$foo.raw -t sw -r 8000 raw_8k/$foo.raw## The feature files were created as follows:## wave2feat \# -i raw_8k/$foo.raw -raw \# -srate 8000 \# -wlen 0.025625 \# -alpha 0.97 \# -nfft 512 \# -nfilt 31 \# -lowerf 200 \# -upperf 3500 \# -ncep 13 \# -o mfc_8k/$foo.mfc## Training was done as follows using SphinxTrain:## 1) First train full models using 15 iterations per step.# 2) Force align the training data against models from step #1.# 3) Use aligned transcripts from step #2 to train new models;# set convergence ratio to 0.02. This resulted in around# 5-7 iterations per step.#description = Wall Street Journal 8kHz acoustic modelsmodelClass = edu.cmu.sphinx.model.acoustic.WSJ_8gau_13dCep_8kHz_31mel_200Hz_3500Hz.ModelmodelLoader = edu.cmu.sphinx.model.acoustic.WSJ_8gau_13dCep_8kHz_31mel_200Hz_3500Hz.ModelLoaderisBinary = truefeatureType = 1s_c_d_ddvectorLength = 39sparseForm = falsenumberFftPoints = 512numberFilters = 31gaussians = 8minimumFrequency = 200maximumFrequency = 3500sampleRate = 8000dataLocation = cd_continuous_8gaumodelDefinition = etc/WSJ_8gau_13dCep_8kHz_31mel_200Hz_3500Hz.4000.mdef
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -