⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 buildcircuit_updatecomponents.m

📁 Talking about adaptive filter digital
💻 M
📖 第 1 页 / 共 2 页
字号:
function curStage = BuildCircuit_UpdateComponents(curStage,nRTol,nCTol,componentName,componentValue)
% BuildCircuit_UpdateComponents is a subfile of the AnalogFilter GUI collection
%
% BuildCircuit_UpdateComponents determines the required R/C values to implement a given 
% zero, first, or second order transfer function, as specified by its zeros, poles, and k.

% James C. Squire, Assistant Professor, Virginia Military Institute
% Matthew R. York, Cadet, Virginia Military Institute
% ver 1.0


schName = curStage.schName;
if nargin==1
    nRTol=0; nCTol=0;
end

if nargin==4 || nargin==5      %given a new component value
    vfCSelect = curStage.vfCSelect;
    vfRSelect = curStage.vfRSelect;
    if isequal(componentName,'Ca')
        vfCSelect(1) = componentValue;
    elseif isequal(componentName,'Cb')
        vfCSelect(2) = componentValue;
    elseif isequal(componentName,'Ra')
        vfRSelect(1) = componentValue;
    elseif isequal(componentName,'Rb')
        vfRSelect(2) = componentValue;
    elseif isequal(componentName,'New Tolerance') % don't change any component yet
    else
        error(['Wrong number of arguments in ' mfilename])
    end
else
    vfCSelect = [];
    vfRSelect = [];
    csCSelectMan = {};
    csRSelectMan = {};
    vnCSelectExp = [];
    vnRSelectExp = [];
    vfCCalc = [];
    vfRCalc = [];
    csCCalc = {};
    csRCalc = {};
end

switch upper(schName)
    case 'SK_LP_KLE1'
        % convert from zpk to polynomial form
        a0 = abs(curStage.k);  % implements a non-inverting biquad, even if given inverting
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        C1 = a0*b1^2*Ca/(a0+b0)^2;
        R1 = 1/(sqrt(a0*C1*Ca));
        if b1*R1*Ca-2==0
            R2 = Inf;  % not present
        else
            R2 = R1/(b1*R1*Ca-2);
        end
        if abs(R2)>1e12, R2=Inf; end
        vfCCalc = [C1];
        vfRCalc = [R1 R2];
    case 'SK_LP_KGT1'
        % convert from zpk to polynomial form
        a0 = abs(curStage.k);  % implements a non-inverting biquad, even if given inverting
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            Ra = 10e3;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [Ra];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        Ra = vfRSelect(1);
        R2 = Ra*(a0-b0)/b0;
        R1 = (sqrt(8*Ra*R2*b0+b1^2*Ra^2)-b1*Ra)/(2*b0*Ca*R2);
        C1 = 1/(b0*Ca*R1^2);
        vfCCalc = [C1];
        vfRCalc = [R1 R2];
    case 'SK_HP_KLE1'
        % convert from zpk to polynomial form
        a2 = abs(curStage.k);  % implements a non-inverting biquad, even if given inverting
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        C1 = Ca*(1-a2)/a2;
        R1 = (a2+1)/(b1*Ca);
        R2 = a2/(b0*R1*Ca^2);
        vfCCalc = [C1];
        vfRCalc = [R1 R2];
    case 'SK_HP_KGT1'
        % convert from zpk to polynomial form
        a2 = abs(curStage.k);  % implements a non-inverting biquad, even if given inverting
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        R1 = 4/(Ca*(b1+sqrt(b1^2+8*b0*(a2-1))));
        R2 = (b1+sqrt(b1^2+8*b0*(a2-1)))/(4*b0*Ca);
        R3 = R1*(a2-1);
        vfCCalc = [];
        vfRCalc = [R1 R2 R3];
    case 'MFB_LP'
        % convert from zpk to polynomial form
        a0 = -abs(curStage.k);  % implements an inverting biquad, even if given NI
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        R1 = b1/(2*b0*Ca-a0*Ca);
        R2 = -R1*b0/a0;
        C1 = 1/(b0*Ca*R1^2);
        vfCCalc = [C1];
        vfRCalc = [R1 R2];
    case 'MFB_Z_LP'
        % convert from zpk to polynomial form
        a0 = abs(curStage.z(1))^2 * abs(curStage.k); % MFB is NI, even if k is neg
        a2 = abs(curStage.k);
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        kf = (a0+a2*b0)/(a2*(a0+a2*(b0+b1^2)));
        C1 = Ca*(1-a2*kf)*(-a0+a2*kf*(a0+a2*b1^2))/(a2^3*b1^2*kf^2);
        R1 = (1-a2*kf)/(a2*b1*C1*kf);
        R2 = R1*(1/(a2*kf)-1);
        R3 = R1/(b1*Ca*R1 - 2);
        vfCCalc = [C1];
        vfRCalc = [R1 R2 R3];
    case 'MFB_Z_HP'
        % convert from zpk to polynomial form
        a0 = abs(curStage.z(1))^2 * abs(curStage.k); % MFB is NI, even if k is neg
        a2 = abs(curStage.k);
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        kf = (b0^2*(a0+a2*b0))/(a0*(a2*b0^2+a0*(b0+b1^2)));
        C1 = Ca*(a2*b0-a0)/a0;
        R1 = (C1+2*Ca)/(b1*Ca^2);
        R2 = R1*(1+C1/Ca-a2*kf)/(a2*kf);
        R3 = 1/(b0*Ca^2*R1);
        vfCCalc = [C1];
        vfRCalc = [R1 R2 R3];
    case 'AM_LP_N'
        % convert from zpk to polynomial form
        a0 = abs(curStage.k);  % implements a non-inverting biquad, even if given inverting
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        R1 = 1/(Ca*sqrt(b0));
        R2 = 1/(b1*Ca);
        R3 = 1/(a0*Ca^2*R1);
        vfCCalc = [];
        vfRCalc = [R1 R2 R3];
    case 'AM_LP_I'
        % convert from zpk to polynomial form
        a0 = -abs(curStage.k);  % implements an inverting biquad, even if given NI
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        R1 = 1/(Ca*sqrt(b0));
        R2 = 1/(b1*Ca);
        R3 = -1/(a0*Ca^2*R1);
        vfCCalc = [];
        vfRCalc = [R1 R2 R3];
    case 'AM_HP'
        % convert from zpk to polynomial form
        a2 = -abs(curStage.k);  % implements an inverting biquad, even if given NI
        b0 = abs(curStage.p(1))^2;
        b1 = -2*real(curStage.p(1));
        if nargin<4
            % Create default values.
            Ca = 1e-9;
            % load the variables
            vfCSelect = [Ca];
            vfRSelect = [];
        end
        % Round components to given tolerance
        [vfCSelect, vfRSelect] = RoundComponent(vfCSelect, vfRSelect, nCTol, nRTol);
        % Calculate R,C Calc vectors given R,C Select vectors
        Ca = vfCSelect(1);
        C1 = -a2*Ca;
        R1 = 1/(Ca*sqrt(b0));
        R2 = 1/(b1*Ca);
        vfCCalc = [C1];
        vfRCalc = [R1 R2];
    case 'AM_Z'

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -