📄 g722.cpp
字号:
dl = ((long)dec_detl*qq6_code6_table[ilr]) >> 15;
/* compute the quantized recontructed signal for adaptive predic */
rl = dl + dec_sl;
/* quantizer adaptation implementation */
/* first compute the log scaling factor dec_nbl */
dec_nbl = logscl(ilr,dec_nbl);
/* then compute the linear scaling factor dec_detl */
dec_detl = scalel(dec_nbl,8);
/* adaptive prediction implementation */
/* compute the partial reconstructed signal */
dec_plt = dec_dlt + dec_szl;
/* update the zero section predictor coefficients */
upzero(dec_dlt,dec_del_dltx,dec_del_bpl);
/* update second pole section predictor coefficient */
dec_al2 = uppol2(dec_al1,dec_al2,dec_plt,dec_plt1,dec_plt2);
/* update first pole section predictor coefficient */
dec_al1 = uppol1(dec_al1,dec_al2,dec_plt,dec_plt1);
/* compute the quantized recontructed signal for adaptive predic */
dec_rlt = dec_sl + dec_dlt;
/* implement delays for next time */
dec_rlt2 = dec_rlt1;
dec_rlt1 = dec_rlt;
dec_plt2 = dec_plt1;
dec_plt1 = dec_plt;
/*END: Lo Sub-Band Decoder*/
/*BEGIN: Hi Sub-Band Decoder*/
/* compute predictor output for zero section */
dec_szh = filtez(dec_del_bph,dec_del_dhx);
/* compute predictor output signal for pole section */
dec_sph = filtep(dec_rh1,dec_ah1,dec_rh2,dec_ah2);
/* compute the predictor output value */
dec_sh = dec_sph + dec_szh;
/* compute quantized difference signal for adaptive predic */
dec_dh = ((long)dec_deth*qq2_code2_table[ih]) >> 15L ;
/* quantizer adaptation implementation */
/* first compute the log scaling factor dec_nbh */
dec_nbh = logsch(ih,dec_nbh);
/* then compute the linear scaling factor dec_deth */
dec_deth = scalel(dec_nbh,10);
/* adaptive prediction implementation */
/* compute the partial reconstructed signal */
dec_ph = dec_dh + dec_szh;
/* update the zero section predictor coefficients */
upzero(dec_dh,dec_del_dhx,dec_del_bph);
/* update second pole section predictor coefficient */
dec_ah2 = uppol2(dec_ah1,dec_ah2,dec_ph,dec_ph1,dec_ph2);
/* update first pole section predictor coefficient */
dec_ah1 = uppol1(dec_ah1,dec_ah2,dec_ph,dec_ph1);
/* compute the quantized recontructed signal for adaptive predic */
rh = dec_sh + dec_dh;
/* implement delays for next time */
dec_rh2 = dec_rh1;
dec_rh1 = rh;
dec_ph2 = dec_ph1;
dec_ph1 = dec_ph;
/*END: Hi Sub-Band Decoder*/
/*BEGIN: Receive Quadrature Mirror Filter*/
xd = rl - rh;
xs = rl + rh;
h_ptr = h;
ac_ptr = accumc;
ad_ptr = accumd;
/* first multiply and accumulate */
xa1 = (long)xd * (*h_ptr++);
xa2 = (long)xs * (*h_ptr++);
/* main multiply accumulate */
for(i = 0 ; i < 10 ; i++) {
xa1 += (long)(*ac_ptr++) * (*h_ptr++);
xa2 += (long)(*ad_ptr++) * (*h_ptr++);
}
/* final multiply and accumulate */
xa1 += (long)(*ac_ptr) * (*h_ptr++);
xa2 += (long)(*ad_ptr) * (*h_ptr++);
/* scale by 2^14 */
xout1 = xa1 >> 14;
xout2 = xa2 >> 14;
/* update delay lines */
ac_ptr1 = ac_ptr - 1;
ad_ptr1 = ad_ptr - 1;
for(i = 0 ; i < 10 ; i++) {
*ac_ptr-- = *ac_ptr1--;
*ad_ptr-- = *ad_ptr1--;
}
*ac_ptr = xd;
*ad_ptr = xs;
/*END: Receive Quadrature Mirror Filter*/
}
/***************************************************************
reset: clears all storage locations
***************************************************************/
void reset()
{
int i;
detl = dec_detl = 32; /* reset to min scale factor */
deth = dec_deth = 8;
nbl = al1 = al2 = plt1 = plt2 = rlt1 = rlt2 = 0;
nbh = ah1 = ah2 = ph1 = ph2 = rh1 = rh2 = 0;
dec_nbl = dec_al1 = dec_al2 = dec_plt1 = dec_plt2 = dec_rlt1 = dec_rlt2 = 0;
dec_nbh = dec_ah1 = dec_ah2 = dec_ph1 = dec_ph2 = dec_rh1 = dec_rh2 = 0;
for(i = 0 ; i < 6 ; i++) {
delay_dltx[i] = 0;
delay_dhx[i] = 0;
dec_del_dltx[i] = 0;
dec_del_dhx[i] = 0;
}
for(i = 0 ; i < 6 ; i++) {
delay_bpl[i] = 0;
delay_bph[i] = 0;
dec_del_bpl[i] = 0;
dec_del_bph[i] = 0;
}
for(i = 0 ; i < 24 ; i++) tqmf[i] = 0;
for(i = 0 ; i < 11 ; i++) {
accumc[i] = 0;
accumd[i] = 0;
}
}
/***************************************************************
filtez: compute predictor output signal (zero section)
input: bpl1-6 and dlt1-6, output: szl
***************************************************************/
int filtez(int *bpl,int *dlt)
{
int i;
long int zl;
zl = (long)(*bpl++) * (*dlt++);
for(i = 1 ; i < 6 ; i++)
zl += (long)(*bpl++) * (*dlt++);
return((int)(zl >> 14));
}
/***************************************************************
filtep: compute predictor output signal (pole section)
input rlt1-2 and al1-2, output spl
***************************************************************/
int filtep(int rlt1,int al1,int rlt2,int al2)
{
long int pl;
pl = (long)al1*rlt1;
pl += (long)al2*rlt2;
return((int)(pl >> 14)); /* x2 here */
}
/***************************************************************
quantl: quantize the difference signal in the lower sub-band
***************************************************************/
int quantl(int el,int detl)
{
int ril,mil;
long int wd,decis;
/* abs of difference signal */
wd = abs(el);
/* determine mil based on decision levels and detl gain */
for(mil = 0 ; mil < 30 ; mil++) {
decis = (decis_levl[mil]*(long)detl) >> 15L;
if(wd < decis) break;
}
/* if mil=30 then wd is less than all decision levels */
if(el >= 0) ril = quant26bt_pos[mil];
else ril = quant26bt_neg[mil];
return(ril);
}
/***************************************************************
logscl: update the logarithmic quantizer scale factor in lower
sub-band note that nbl is passed and returned
***************************************************************/
int logscl(int il,int nbl)
{
long int wd;
wd = ((long)nbl * 127L) >> 7L; /* leak factor 127/128 */
nbl = (int)wd + wl_code_table[il >> 2];
if(nbl < 0) nbl = 0;
if(nbl > 18432) nbl = 18432;
return(nbl);
}
/***************************************************************
scalel: compute the quantizer scale factor in the lower or upper
sub-band
***************************************************************/
int scalel(int nbl,int shift_constant)
{
int wd1,wd2,wd3;
wd1 = (nbl >> 6) & 31;
wd2 = nbl >> 11;
wd3 = ilb_table[wd1] >> (shift_constant + 1 - wd2);
return(wd3 << 3);
}
/***************************************************************
upzero: inputs: dlt, dlti[0-5], bli[0-5], outputs: updated bli[0-5]
also implements delay of bli and update of dlti from dlt
***************************************************************/
void upzero(int dlt,int *dlti,int *bli)
{
int i,wd2,wd3;
/*if dlt is zero, then no sum into bli */
if(dlt == 0) {
for(i = 0 ; i < 6 ; i++) {
bli[i] = (int)((255L*bli[i]) >> 8L); /* leak factor of 255/256 */
}
}
else {
for(i = 0 ; i < 6 ; i++) {
if((long)dlt*dlti[i] >= 0) wd2 = 128; else wd2 = -128;
wd3 = (int)((255L*bli[i]) >> 8L); /* leak factor of 255/256 */
bli[i] = wd2 + wd3;
}
}
/* implement delay line for dlt */
dlti[5] = dlti[4];
dlti[4] = dlti[3];
dlti[3] = dlti[2];
dlti[2] = dlti[1];
dlti[1] = dlti[0];
dlti[0] = dlt;
}
/***************************************************************
uppol2: update second predictor coefficient (pole section)
inputs: al1, al2, plt, plt1, plt2. outputs: apl2
***************************************************************/
int uppol2(int al1,int al2,int plt,int plt1,int plt2)
{
long int wd2;
int apl2;
wd2 = 4L*(long)al1;
if((long)plt*plt1 >= 0L) wd2 = -wd2; /* check same sign */
wd2 = wd2 >> 7; /* gain of 1/128 */
if((long)plt*plt2 >= 0L) {
wd2 = wd2 + 128; /* same sign case */
}
else {
wd2 = wd2 - 128;
}
apl2 = wd2 + (127L*(long)al2 >> 7L); /* leak factor of 127/128 */
/* apl2 is limited to +-.75 */
if(apl2 > 12288) apl2 = 12288;
if(apl2 < -12288) apl2 = -12288;
return(apl2);
}
/***************************************************************
uppol1: update first predictor coefficient (pole section)
inputs: al1, apl2, plt, plt1. outputs: apl1
***************************************************************/
int uppol1(int al1,int apl2,int plt,int plt1)
{
long int wd2;
int wd3,apl1;
wd2 = ((long)al1*255L) >> 8L; /* leak factor of 255/256 */
if((long)plt*plt1 >= 0L) {
apl1 = (int)wd2 + 192; /* same sign case */
}
else {
apl1 = (int)wd2 - 192;
}
/* note: wd3= .9375-.75 is always positive */
wd3 = 15360 - apl2; /* limit value */
if(apl1 > wd3) apl1 = wd3;
if(apl1 < -wd3) apl1 = -wd3;
return(apl1);
}
/***************************************************************
logsch: update the logarithmic quantizer scale factor in higher
sub-band note that nbh is passed and returned
***************************************************************/
int logsch(int ih,int nbh)
{
int wd;
wd = ((long)nbh * 127L) >> 7L; /* leak factor 127/128 */
nbh = wd + wh_code_table[ih];
if(nbh < 0) nbh = 0;
if(nbh > 22528) nbh = 22528;
return(nbh);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -