📄 macroblock.c
字号:
int slice_too_big(Slice *currSlice, int rlc_bits)
{
DataPartition *dataPart;
Bitstream *currStream;
EncodingEnvironmentPtr eep;
int i;
int size_in_bytes;
//! CAVLC
if (currSlice->symbol_mode == CAVLC)
{
for (i = 0; i < currSlice->max_part_nr; i++)
{
dataPart = &(currSlice->partArr[i]);
currStream = dataPart->bitstream;
size_in_bytes = currStream->byte_pos /*- currStream->tmp_byte_pos*/;
if (currStream->bits_to_go < 8)
size_in_bytes++;
if (currStream->bits_to_go < rlc_bits)
size_in_bytes++;
if(size_in_bytes > params->slice_argument)
return TRUE;
}
}
else //! CABAC
{
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart= &(currSlice->partArr[i]);
eep = &(dataPart->ee_cabac);
if( arienco_bits_written(eep) > (params->slice_argument*8))
return TRUE;
}
}
return FALSE;
}
/*!
************************************************************************
* \brief
* Residual Coding of an 8x8 Luma block (not for intra)
*
* \return
* coefficient cost
************************************************************************
*/
int LumaResidualCoding8x8 ( Macroblock* currMB, //!< Current Macroblock to be coded
int *cbp, //!< Output: cbp (updated according to processed 8x8 luminance block)
int64 *cbp_blk, //!< Output: block cbp (updated according to processed 8x8 luminance block)
int block8x8, //!< block number of 8x8 block
short p_dir, //!< prediction direction
int l0_mode, //!< list0 prediction mode (1-7, 0=DIRECT)
int l1_mode, //!< list1 prediction mode (1-7, 0=DIRECT)
short l0_ref_idx, //!< reference picture for list0 prediction
short l1_ref_idx, //!< reference picture for list0 prediction
int is_cavlc //!< entropy mode?
)
{
int block_y, block_x, pic_pix_y, pic_pix_x, i, j, nonzero = 0, cbp_blk_mask;
int coeff_cost = 0;
int mb_y = (block8x8 >> 1) << 3;
int mb_x = (block8x8 & 0x01) << 3;
int cbp_mask = 1 << block8x8;
int bxx, byy; // indexing curr_blk
int skipped = (l0_mode == 0 && l1_mode == 0 && (img->type != B_SLICE));
//set transform size
int need_8x8_transform = currMB->luma_transform_size_8x8_flag;
int uv, nonzerocr[3]={0,0,0};
short bipred_me = currMB->bipred_me[block8x8];
coeff_cost_cr[1] = coeff_cost_cr[2] = 0;
//===== loop over 4x4 blocks =====
if(!need_8x8_transform)
{
if (((p_dir == 0 || p_dir == 2 )&& l0_mode < 5) || ((p_dir == 1 || p_dir == 2 ) && l1_mode < 5))
{
LumaPrediction (currMB, mb_x, mb_y, 8, 8, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx, bipred_me);
//===== compute prediction residual ======
ComputeResidue (pCurImg, img->mb_pred[0], img->mb_ores[0], mb_y, mb_x, img->opix_y, img->opix_x + mb_x, 8, 8);
}
for (byy=0, block_y=mb_y; block_y<mb_y+8; byy+=4, block_y+=4)
{
for (bxx=0, block_x=mb_x; block_x<mb_x+8; bxx+=4, block_x+=4)
{
pic_pix_x = img->opix_x + block_x;
cbp_blk_mask = (block_x >> 2) + block_y;
//===== prediction of 4x4 block =====
if (!(((p_dir == 0 || p_dir == 2 )&& l0_mode < 5) || ((p_dir == 1 || p_dir == 2 ) && l1_mode < 5)))
{
LumaPrediction (currMB, block_x, block_y, 4, 4, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx, bipred_me);
//===== compute prediction residual ======
ComputeResidue(pCurImg, img->mb_pred[0], img->mb_ores[0], block_y, block_x, img->opix_y, pic_pix_x, 4, 4);
}
if (img->P444_joined)
{
for (uv = PLANE_U; uv <= PLANE_V; uv++)
{
select_plane((ColorPlane) (uv));
ChromaPrediction (currMB, uv - 1, block_x, block_y, 4, 4, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx, bipred_me);
//===== compute prediction residual ======
ComputeResidue(pImgOrg[uv], img->mb_pred[uv], img->mb_ores[uv], block_y, block_x, img->opix_y, pic_pix_x, 4, 4);
}
select_plane(PLANE_Y);
}
//===== DCT, Quantization, inverse Quantization, IDCT, Reconstruction =====
if (!skipped && ( (img->NoResidueDirect != 1) || (currMB->qp_scaled[0] == 0 && img->lossless_qpprime_flag == 1) ))
{
//===== DCT, Quantization, inverse Quantization, IDCT, Reconstruction =====
nonzero = pDCT_4x4 (currMB, PLANE_Y, block_x, block_y, &coeff_cost, 0, is_cavlc);
if (nonzero)
{
(*cbp_blk) |= (int64)1 << cbp_blk_mask; // one bit for every 4x4 block
(*cbp) |= cbp_mask; // one bit for the 4x4 blocks of an 8x8 block
}
if (img->P444_joined)
{
if (img->type!=SP_SLICE)
{
for (uv = PLANE_U; uv <= PLANE_V; uv++)
{
select_plane((ColorPlane) uv);
nonzerocr[uv] = pDCT_4x4( currMB, (ColorPlane) uv, block_x, block_y, &coeff_cost_cr[uv], 0, is_cavlc);
if (nonzerocr[uv])
{
(cur_cbp_blk[uv]) |= (int64) 1 << cbp_blk_mask; // one bit for every 4x4 block
(cmp_cbp[uv]) |= cbp_mask; // one bit for the 4x4 blocks of an 8x8 block
}
}
select_plane(PLANE_Y);
}
else
{
assert(img->type==SP_SLICE); //SP_SLICE not implementd for FREXT_AD444
}
}
}
}
}
}
else
{
for (block_y = mb_y; block_y < mb_y + 8; block_y += 8)
{
pic_pix_y = img->opix_y + block_y;
for (block_x = mb_x; block_x < mb_x + 8; block_x += 8)
{
pic_pix_x = img->opix_x + block_x;
cbp_blk_mask = (block_x>>2) + block_y;
//===== prediction of 4x4 block =====
LumaPrediction (currMB, block_x, block_y, 8, 8, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx, bipred_me);
//===== compute prediction residual ======
ComputeResidue (pCurImg, img->mb_pred[0], img->mb_ores[0], block_y, block_x, img->opix_y, pic_pix_x, 8, 8);
if (img->P444_joined)
{
for (uv = PLANE_U; uv <= PLANE_V; uv++)
{
select_plane((ColorPlane) uv);
ChromaPrediction (currMB, uv - 1, block_x, block_y, 8, 8, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx, bipred_me);
//===== compute prediction residual ======
ComputeResidue (pImgOrg[uv], img->mb_pred[uv], img->mb_ores[uv], block_y, block_x, img->opix_y, pic_pix_x, 8, 8);
}
select_plane(PLANE_Y);
}
}
}
if (img->NoResidueDirect != 1 && !skipped)
{
if (img->type!=SP_SLICE)
nonzero = pDCT_8x8 (currMB, PLANE_Y, block8x8, &coeff_cost, 0);
if (nonzero)
{
(*cbp_blk) |= 51 << (4*block8x8 - 2*(block8x8 & 0x01)); // corresponds to 110011, as if all four 4x4 blocks contain coeff, shifted to block position
(*cbp) |= cbp_mask; // one bit for the 4x4 blocks of an 8x8 block
}
if(img->P444_joined)
{
if (img->type!=SP_SLICE)
{
for (uv = PLANE_U; uv <= PLANE_V; uv++)
{
select_plane((ColorPlane) uv);
nonzerocr[uv] = pDCT_8x8( currMB, (ColorPlane) uv, block8x8, &coeff_cost_cr[uv], 0);
if (nonzerocr[uv])
{
(cur_cbp_blk[uv]) |= 51 << (4*block8x8-2*(block8x8 & 0x01)); // corresponds to 110011, as if all four 4x4 blocks contain coeff, shifted to block position
(cmp_cbp[uv]) |= cbp_mask; // one bit for the 4x4 blocks of an 8x8 block
}
}
select_plane(PLANE_Y);
}
}
}
}
/*
The purpose of the action below is to prevent that single or 'expensive' coefficients are coded.
With 4x4 transform there is larger chance that a single coefficient in a 8x8 or 16x16 block may be nonzero.
A single small (level=1) coefficient in a 8x8 block will cost: 3 or more bits for the coefficient,
4 bits for EOBs for the 4x4 blocks,possibly also more bits for CBP. Hence the total 'cost' of that single
coefficient will typically be 10-12 bits which in a RD consideration is too much to justify the distortion improvement.
The action below is to watch such 'single' coefficients and set the reconstructed block equal to the prediction according
to a given criterium. The action is taken only for inter luma blocks.
Notice that this is a pure encoder issue and hence does not have any implication on the standard.
coeff_cost is a parameter set in dct_4x4() and accumulated for each 8x8 block. If level=1 for a coefficient,
coeff_cost is increased by a number depending on RUN for that coefficient.The numbers are (see also dct_4x4()): 3,2,2,1,1,1,0,0,...
when RUN equals 0,1,2,3,4,5,6, etc.
If level >1 coeff_cost is increased by 9 (or any number above 3). The threshold is set to 3. This means for example:
1: If there is one coefficient with (RUN,level)=(0,1) in a 8x8 block this coefficient is discarded.
2: If there are two coefficients with (RUN,level)=(1,1) and (4,1) the coefficients are also discarded
sum_cnt_nonz[0] is the accumulation of coeff_cost over a whole macro block. If sum_cnt_nonz[0] is 5 or less for the whole MB,
all nonzero coefficients are discarded for the MB and the reconstructed block is set equal to the prediction.
*/
if (img->NoResidueDirect != 1 && !skipped && coeff_cost <= _LUMA_COEFF_COST_ &&
((currMB->qp_scaled[0])!=0 || img->lossless_qpprime_flag==0)&&
!(img->type==SP_SLICE && (si_frame_indicator==1 || sp2_frame_indicator==1 )))// last set of conditions
// cannot skip when perfect reconstruction is as in switching pictures or SI pictures
{
coeff_cost = 0;
(*cbp) &= (63 - cbp_mask);
(*cbp_blk) &= ~(51 << (4*block8x8-2*(block8x8 & 0x01)));
memset( img->cofAC[block8x8][0][0], 0, 4 * 2 * 65 * sizeof(int));
for (j=mb_y; j<mb_y+8; j++)
memcpy(&enc_picture->imgY[img->pix_y + j][img->pix_x + mb_x], &img->mb_pred[0][j][mb_x], 2 * BLOCK_SIZE * sizeof(imgpel));
if (img->type==SP_SLICE)
{
for (i=mb_x; i < mb_x + BLOCK_SIZE_8x8; i+=BLOCK_SIZE)
for (j=mb_y; j < mb_y + BLOCK_SIZE_8x8; j+=BLOCK_SIZE)
copyblock_sp(currMB, PLANE_Y, i, j);
}
}
if(img->P444_joined)
{
for (uv = PLANE_U; uv <= PLANE_V; uv++)
{
if (img->NoResidueDirect != 1 && !skipped && coeff_cost_cr[uv] <= _LUMA_COEFF_COST_ &&
(currMB->qp_scaled[uv]!=0 || img->lossless_qpprime_flag==0))// last set of conditions
{
coeff_cost_cr[uv] = 0;
cmp_cbp[uv] &= (63 - cbp_mask);
cur_cbp_blk[uv] &= ~(51 << (4*block8x8-2*(block8x8 & 0x01)));
memset( img->cofAC[block8x8 + 4 * uv][0][0], 0, 4 * 2 * 65 * sizeof(int));
for (j=mb_y; j<mb_y+8; j++)
memcpy(&enc_picture->imgUV[uv - 1][img->pix_y + j][img->pix_x + mb_x], &img->mb_pred[uv][j][mb_x], 2 * BLOCK_SIZE * sizeof(imgpel));
}
}
}
return coeff_cost;
}
/*!
************************************************************************
* \brief
* Set mode parameters and reference frames for an 8x8 block
************************************************************************
*/
void SetModesAndRefframe (Macroblock* currMB, int b8, short* p_dir, int list_mode[2], short list_ref_idx[2])
{
int j = 2*(b8>>1);
int i = 2*(b8 & 0x01);
list_mode[0] = list_mode[1] = list_ref_idx[0] = list_ref_idx[1] = -1;
*p_dir = currMB->b8pdir[b8];
if (img->type!=B_SLICE)
{
list_ref_idx[0] = enc_picture->motion.ref_idx[LIST_0][img->block_y+j][img->block_x+i];
list_ref_idx[1] = 0;
list_mode[0] = currMB->b8mode[b8];
list_mode[1] = 0;
}
else
{
if (currMB->b8pdir[b8]==-1)
{
list_ref_idx[0] = -1;
list_ref_idx[1] = -1;
list_mode[0] = 0;
list_mode[1] = 0;
}
else if (currMB->b8pdir[b8]==0)
{
list_ref_idx[0] = enc_picture->motion.ref_idx[LIST_0][img->block_y+j][img->block_x+i];
list_ref_idx[1] = 0;
list_mode[0] = currMB->b8mode[b8];
list_mode[1] = 0;
}
else if (currMB->b8pdir[b8]==1)
{
list_ref_idx[0] = 0;
list_ref_idx[1] = enc_picture->motion.ref_idx[LIST_1][img->block_y+j][img->block_x+i];
list_mode[0] = 0;
list_mode[1] = currMB->b8mode[b8];
}
else
{
list_ref_idx[0] = enc_picture->motion.ref_idx[LIST_0][img->block_y+j][img->block_x+i];
list_ref_idx[1] = enc_picture->motion.ref_idx[LIST_1][img->block_y+j][img->block_x+i];
list_mode[0] = currMB->b8mode[b8];
list_mode[1] = currMB->b8mode[b8];
}
}
}
/*!
************************************************************************
* \brief
* Residual Coding of a Luma macroblock (not for intra)
************************************************************************
*/
void LumaResidualCoding (Macroblock *currMB, int is_cavlc)
{
int uv, i,j,block8x8,b8_x,b8_y;
int list_mode[2];
short list_ref_idx[2];
short p_dir;
int sum_cnt_nonz[3] = {0 ,0, 0};
int is_skip = img->type == P_SLICE && currMB->mb_type == PSKIP;
//imgpel **mb_pred = img->mb_pred[0];
currMB->cbp = 0;
currMB->cbp_blk = 0;
cmp_cbp[1] = cmp_cbp[2] = 0;
cur_cbp_blk[1] = cur_cbp_blk[2] = 0;
for (block8x8=0; block8x8<4; block8x8++)
{
SetModesAndRefframe (currMB, block8x8, &p_dir, list_mode, list_ref_idx);
sum_cnt_nonz[0] += LumaResidualCoding8x8 (currMB, &(currMB->cbp), &(currMB->cbp_blk), block8x8,
p_dir, list_mode[0], list_mode[1], list_ref_idx[0], list_ref_idx[1], is_cavlc);
if(img->P444_joined)
{
sum_cnt_nonz[1] += coeff_cost_cr[1];
sum_cnt_nonz[2] += coeff_cost_cr[2];
}
}
if ((is_skip ||
(sum_cnt_nonz[0] <= _LUMA_MB_COEFF_COST_ && ((currMB->qp_scaled[0])!=0 || img->lossless_qpprime_flag==0))) &&
!(img->type==SP_SLICE && (si_frame_indicator==1 || sp2_frame_indicator==1)))// modif ES added last set of conditions
//cannot skip if SI or switching SP frame perfect reconstruction is needed
{
currMB->cbp &= 0xfffff0 ;
currMB->cbp_blk &= 0xff0000 ;
for (j=0; j < MB_BLOCK_SIZE; j++)
memcpy(&enc_picture->imgY[img->pix_y+j][img->pix_x], img->mb_pred[0][j], MB_BLOCK_SIZE * sizeof (imgpel));
memset( img->cofAC[0][0][0], 0, 4 * 4 * 2 * 65 * sizeof(int));
if (img->type==SP_SLICE)
{
for(block8x8=0;block8x8<4;block8x8++)
{
b8_x=(block8x8&1)<<3;
b8_y=(block8x8&2)<<2;
for (i = b8_x; i < b8_x + BLOCK_SIZE_8x8; i += 4)
for (j = b8_y; j < b8_y + BLOCK_SIZE_8x8;j += 4)
copyblock_sp(currMB, PLANE_Y, i, j);
}
}
}
if (img->P444_joined)
{
for (uv = PLANE_U; uv <= PLANE_V; uv++)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -