📄 cabac.c
字号:
act_ctx=4;
unary_bin_encode(eep_dp, act_sym,ctx->ref_no_contexts[addctx] + act_ctx,1);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the coded
* block pattern of a given delta quant.
****************************************************************************
*/
void writeDquant_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
MotionInfoContexts *ctx = img->currentSlice->mot_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int dquant = se->value1;
int sign = (dquant <= 0) ? 0 : -1;
int act_sym = (iabs(dquant) << 1) + sign;
int act_ctx = ((currMB->prev_dqp != 0) ? 1 : 0);
if (act_sym==0)
{
biari_encode_symbol(eep_dp, 0, ctx->delta_qp_contexts + act_ctx );
}
else
{
biari_encode_symbol(eep_dp, 1, ctx->delta_qp_contexts + act_ctx);
act_ctx=2;
act_sym--;
unary_bin_encode(eep_dp, act_sym,ctx->delta_qp_contexts+act_ctx,1);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the motion
* vector data of a B-frame MB.
****************************************************************************
*/
void writeMVD_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int i = (img->subblock_x << 2);
int j = (img->subblock_y << 2);
int a, b;
int act_ctx;
int act_sym;
int mv_pred_res;
int mv_local_err;
int mv_sign;
int list_idx = se->value2 & 0x01;
int k = (se->value2>>1); // MVD component
int mb_nr = img->current_mb_nr;
PixelPos block_a, block_b;
MotionInfoContexts *ctx = img->currentSlice->mot_ctx;
Macroblock *currMB = &img->mb_data[mb_nr];
int *mb_size = img->mb_size[IS_LUMA];
get4x4Neighbour(currMB, i - 1, j , mb_size, &block_a);
get4x4Neighbour(currMB, i , j - 1, mb_size, &block_b);
if (block_b.available)
{
b = iabs(img->mb_data[block_b.mb_addr].mvd[list_idx][block_b.y][block_b.x][k]);
if (img->MbaffFrameFlag && (k==1))
{
if ((currMB->mb_field==0) && (img->mb_data[block_b.mb_addr].mb_field==1))
b *= 2;
else if ((currMB->mb_field==1) && (img->mb_data[block_b.mb_addr].mb_field==0))
b /= 2;
}
}
else
b=0;
if (block_a.available)
{
a = iabs(img->mb_data[block_a.mb_addr].mvd[list_idx][block_a.y][block_a.x][k]);
if (img->MbaffFrameFlag && (k==1))
{
if ((currMB->mb_field==0) && (img->mb_data[block_a.mb_addr].mb_field==1))
a *= 2;
else if ((currMB->mb_field==1) && (img->mb_data[block_a.mb_addr].mb_field==0))
a /= 2;
}
}
else
a = 0;
if ((mv_local_err=a+b)<3)
act_ctx = 5*k;
else
{
if (mv_local_err>32)
act_ctx=5*k+3;
else
act_ctx=5*k+2;
}
mv_pred_res = se->value1;
se->context = act_ctx;
act_sym = iabs(mv_pred_res);
if (act_sym == 0)
biari_encode_symbol(eep_dp, 0, &ctx->mv_res_contexts[0][act_ctx] );
else
{
biari_encode_symbol(eep_dp, 1, &ctx->mv_res_contexts[0][act_ctx] );
act_sym--;
act_ctx=5*k;
unary_exp_golomb_mv_encode(eep_dp,act_sym,ctx->mv_res_contexts[1]+act_ctx,3);
mv_sign = (mv_pred_res<0) ? 1: 0;
biari_encode_symbol_eq_prob(eep_dp, (signed short) mv_sign);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the chroma
* intra prediction mode of an 8x8 block
****************************************************************************
*/
void writeCIPredMode_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int act_sym = se->value1;
Macroblock *MbUp = currMB->mb_available_up;
Macroblock *MbLeft = currMB->mb_available_left;
int b = (MbUp != NULL) ? (((MbUp->c_ipred_mode != 0) && (MbUp->mb_type != IPCM)) ? 1 : 0) : 0;
int a = (MbLeft != NULL) ? (((MbLeft->c_ipred_mode != 0) && (MbLeft->mb_type != IPCM)) ? 1 : 0) : 0;
int act_ctx = a + b;
if (act_sym==0)
biari_encode_symbol(eep_dp, 0, ctx->cipr_contexts + act_ctx );
else
{
biari_encode_symbol(eep_dp, 1, ctx->cipr_contexts + act_ctx );
unary_bin_max_encode(eep_dp,(unsigned int) (act_sym-1),ctx->cipr_contexts + 3,0,2);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the coded
* block pattern of an 8x8 block
****************************************************************************
*/
void writeCBP_BIT_CABAC (Macroblock* currMB, int b8, int bit, int cbp, int inter, EncodingEnvironmentPtr eep_dp, TextureInfoContexts *ctx)
{
PixelPos block_a;
int a = 0, b = 0;
int mb_x=(b8 & 0x01)<<1;
int mb_y=(b8 >> 1)<<1;
if (mb_y == 0)
{
if (!((currMB->mb_available_up == NULL) || ((currMB->mb_available_up)->mb_type==IPCM)))
{
b = (( ((currMB->mb_available_up)->cbp & (1<<(2+(mb_x>>1)))) == 0) ? 1 : 0); //VG-ADD
}
}
else
b = ( ((cbp & (1<<(mb_x >> 1))) == 0) ? 1: 0);
if (mb_x == 0)
{
get4x4Neighbour(currMB, (mb_x << 2) - 1, (mb_y << 2), img->mb_size[IS_LUMA], &block_a);
if (block_a.available && (!(img->mb_data[block_a.mb_addr].mb_type==IPCM)))
{
a = (( (img->mb_data[block_a.mb_addr].cbp & (1<<(2*(block_a.y>>1)+1))) == 0) ? 1 : 0); //VG-ADD
}
}
else
a = ( ((cbp & (1<<mb_y)) == 0) ? 1: 0);
//===== WRITE BIT =====
biari_encode_symbol (eep_dp, (signed short) bit, ctx->cbp_contexts[0] + a+2*b);
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the coded
* block pattern of a macroblock
****************************************************************************
*/
void writeCBP_CABAC(Macroblock *currMB, SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
int a0 = 0, a1 = 0, b0 = 0, b1 = 0;
int curr_cbp_ctx, curr_cbp_idx;
int cbp = se->value1; // symbol to encode
int cbp_bit;
int b8;
for (b8=0; b8<4; b8++)
{
curr_cbp_idx = (currMB->b8mode[b8] == IBLOCK ? 0 : 1);
writeCBP_BIT_CABAC (currMB, b8, cbp&(1<<b8), cbp, curr_cbp_idx, eep_dp, ctx);
}
if ((img->yuv_format != YUV400) && (img->yuv_format != YUV444) )
{
// coding of chroma part
if (currMB->mb_available_up != NULL)
{
if((currMB->mb_available_up)->mb_type == IPCM || ((currMB->mb_available_up)->cbp > 15))
b0 = 2;
}
if (currMB->mb_available_left != NULL)
{
if((currMB->mb_available_left)->mb_type==IPCM || ((currMB->mb_available_left)->cbp > 15))
a0 = 1;
}
curr_cbp_ctx = a0 + b0;
cbp_bit = (cbp > 15 ) ? 1 : 0;
biari_encode_symbol(eep_dp, (signed short) cbp_bit, ctx->cbp_contexts[1] + curr_cbp_ctx );
if (cbp > 15)
{
if (currMB->mb_available_up != NULL)
{
if((currMB->mb_available_up)->mb_type==IPCM ||
(((currMB->mb_available_up)->cbp > 15) && ( ((currMB->mb_available_up)->cbp >> 4) == 2)))
b1 = 2;
}
if (currMB->mb_available_left != NULL)
{
if((currMB->mb_available_left)->mb_type==IPCM ||
(((currMB->mb_available_left)->cbp > 15) && ( ((currMB->mb_available_left)->cbp >> 4) == 2)))
a1 = 1;
}
curr_cbp_ctx = a1 + b1;
cbp_bit = ((cbp>>4) == 2) ? 1 : 0;
biari_encode_symbol(eep_dp, (signed short) cbp_bit, ctx->cbp_contexts[2] + curr_cbp_ctx );
}
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
}
/*!
****************************************************************************
* \brief
* Write CBP4-BIT
****************************************************************************
*/
void write_and_store_CBP_block_bit (Macroblock* currMB, EncodingEnvironmentPtr eep_dp, int type, int cbp_bit, TextureInfoContexts* tex_ctx)
{
int y_ac = (type==LUMA_16AC || type==LUMA_8x8 || type==LUMA_8x4 || type==LUMA_4x8 || type==LUMA_4x4
|| type==CB_16AC || type==CB_8x8 || type==CB_8x4 || type==CB_4x8 || type==CB_4x4
|| type==CR_16AC || type==CR_8x8 || type==CR_8x4 || type==CR_4x8 || type==CR_4x4);
int y_dc = (type==LUMA_16DC || type==CB_16DC || type==CR_16DC);
int u_ac = (type==CHROMA_AC && !img->is_v_block);
int v_ac = (type==CHROMA_AC && img->is_v_block);
int chroma_dc = (type==CHROMA_DC || type==CHROMA_DC_2x4 || type==CHROMA_DC_4x4);
int u_dc = (chroma_dc && !img->is_v_block);
int v_dc = (chroma_dc && img->is_v_block);
int j = ((y_ac || u_ac || v_ac ? img->subblock_y : 0) << 2);
int i = (y_ac || u_ac || v_ac ? img->subblock_x : 0);
int bit = (y_dc ? 0 : y_ac ? 1 : u_dc ? 17 : v_dc ? 18 : u_ac ? 19 : 23);
int default_bit = (img->is_intra_block ? 1 : 0);
int upper_bit = default_bit;
int left_bit = default_bit;
int ctx;
int bit_pos_a = 0;
int bit_pos_b = 0;
PixelPos block_a, block_b;
if (y_ac || y_dc)
{
get4x4Neighbour(currMB, (i << 2) - 1, j , img->mb_size[IS_LUMA], &block_a);
get4x4Neighbour(currMB, (i << 2), j -1, img->mb_size[IS_LUMA], &block_b);
if (y_ac)
{
if (block_a.available)
bit_pos_a = 4*block_a.y + block_a.x;
if (block_b.available)
bit_pos_b = 4*block_b.y + block_b.x;
}
}
else
{
get4x4Neighbour(currMB, (i << 2) - 1, j , img->mb_size[IS_CHROMA], &block_a);
get4x4Neighbour(currMB, (i << 2), j - 1, img->mb_size[IS_CHROMA], &block_b);
if (u_ac||v_ac)
{
if (block_a.available)
bit_pos_a = (block_a.y << 2) + block_a.x;
if (block_b.available)
bit_pos_b = (block_b.y << 2) + block_b.x;
}
}
bit = (y_dc ? 0 : y_ac ? 1 + j + i : u_dc ? 17 : v_dc ? 18 : u_ac ? 19 + j + i : 35 + j + i);
//--- set bits for current block ---
if (cbp_bit)
{
if (type==LUMA_8x8)
{
currMB->cbp_bits[0] |= ((int64) 0x33 << bit);
if (enc_picture->chroma_format_idc==YUV444)
{
currMB->cbp_bits_8x8[0] |= ((int64) 0x33 << bit);
}
}
else if (type==CB_8x8)
{
currMB->cbp_bits_8x8[1] |= ((int64) 0x33 << bit);
currMB->cbp_bits[1] |= ((int64) 0x33 << bit);
}
else if (type==CR_8x8)
{
currMB->cbp_bits_8x8[2] |= ((int64) 0x33 << bit);
currMB->cbp_bits[2] |= ((int64) 0x33 << bit);
}
else if (type==LUMA_8x4)
{
currMB->cbp_bits[0] |= ((int64) 0x03 << bit);
}
else if (type==LUMA_4x8)
{
currMB->cbp_bits[0] |= ((int64) 0x11 << bit);
}
else if (type==CB_8x4)
{
currMB->cbp_bits[1] |= ((int64) 0x03 << bit);
}
else if (type==CR_8x4)
{
currMB->cbp_bits[2] |= ((int64) 0x03 << bit);
}
else if (type==CB_4x8)
{
currMB->cbp_bits[1] |= ((int64) 0x11 << bit);
}
else if (type==CR_4x8)
{
currMB->cbp_bits[2] |= ((int64) 0x11 << bit);
}
else if ((type==CB_4x4)||(type==CB_16AC)||(type==CB_16DC))
{
currMB->cbp_bits[1] |= ((int64) 0x01 << bit);
}
else if ((type == CR_4x4)||(type == CR_16AC)||(type == CR_16DC))
{
currMB->cbp_bits[2] |= ((int64) 0x01 << bit);
}
else
{
currMB->cbp_bits[0] |= ((int64) 0x01 << bit);
}
}
bit = (y_dc ? 0 : y_ac ? 1 : u_dc ? 17 : v_dc ? 18 : u_ac ? 19 : 35);
if (enc_picture->chroma_format_idc!=YUV444)
{
if (type!=LUMA_8x8)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -