📄 rfc3533.txt
字号:
frames encoded after this page. This is a hint for the decoder and gives it some timing and position information. Its meaning is dependent on the codec for that logical bitstream and specified in a specific media mapping. A special value of -1 (in two's complement) indicates that no packets finish on this page. 5. bitstream_serial_number: a 4 Byte field containing the unique serial number by which the logical bitstream is identified. 6. page_sequence_number: a 4 Byte field containing the sequence number of the page so the decoder can identify page loss. This sequence number is increasing on each logical bitstream separately. 7. CRC_checksum: a 4 Byte field containing a 32 bit CRC checksum of the page (including header with zero CRC field and page content). The generator polynomial is 0x04c11db7. 8. number_page_segments: 1 Byte giving the number of segment entries encoded in the segment table. 9. segment_table: number_page_segments Bytes containing the lacing values of all segments in this page. Each Byte contains one lacing value. The total header size in bytes is given by: header_size = number_page_segments + 27 [Byte] The total page size in Bytes is given by: page_size = header_size + sum(lacing_values: 1..number_page_segments) [Byte]7. Security Considerations The Ogg encapsulation format is a container format and only encapsulates content (such as Vorbis-encoded audio). It does not provide for any generic encryption or signing of itself or its contained content bitstreams. However, it encapsulates any kind of content bitstream as long as there is a codec for it, and is thus able to contain encrypted and signed content data. It is also possible to add an external security mechanism that encrypts or signs an Ogg physical bitstream and thus provides content confidentiality and authenticity. As Ogg encapsulates binary data, it is possible to include executable content in an Ogg bitstream. This can be an issue with applications that are implemented using the Ogg format, especially when Ogg is used for streaming or file transfer in a networking scenario. AsPfeiffer Informational [Page 11]RFC 3533 OGG May 2003 such, Ogg does not pose a threat there. However, an application decoding Ogg and its encapsulated content bitstreams has to ensure correct handling of manipulated bitstreams, of buffer overflows and the like.8. References [1] Walleij, L., "The application/ogg Media Type", RFC 3534, May 2003. [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.Pfeiffer Informational [Page 12]RFC 3533 OGG May 2003Appendix A. Glossary of terms and abbreviations bos page: The initial page (beginning of stream) of a logical bitstream which contains information to identify the codec type and other decoding-relevant information. chaining (or sequential multiplexing): Concatenation of two or more complete physical Ogg bitstreams. eos page: The final page (end of stream) of a logical bitstream. granule position: An increasing position number for a specific logical bitstream stored in the page header. Its meaning is dependent on the codec for that logical bitstream and specified in a specific media mapping. grouping (or concurrent multiplexing): Interleaving of pages of several logical bitstreams into one complete physical Ogg bitstream under the restriction that all bos pages of all grouped logical bitstreams MUST appear before any data pages. lacing value: An entry in the segment table of a page header representing the size of the related segment. logical bitstream: A sequence of bits being the result of an encoded media stream. media mapping: A specific use of the Ogg encapsulation format together with a specific (set of) codec(s). (Ogg) packet: A subpart of a logical bitstream that is created by the encoder for that bitstream and represents a meaningful entity for the encoder, but only a sequence of bits to the Ogg encapsulation. (Ogg) page: A physical bitstream consists of a sequence of Ogg pages containing data of one logical bitstream only. It usually contains a group of contiguous segments of one packet only, but sometimes packets are too large and need to be split over several pages. physical (Ogg) bitstream: The sequence of bits resulting from an Ogg encapsulation of one or several logical bitstreams. It consists of a sequence of pages from the logical bitstreams with the restriction that the pages of one logical bitstream MUST come in their correct temporal order.Pfeiffer Informational [Page 13]RFC 3533 OGG May 2003 (Ogg) segment: The Ogg encapsulation process splits each packet into chunks of 255 bytes plus a last fractional chunk of less than 255 bytes. These chunks are called segments.Appendix B. Acknowledgements The author gratefully acknowledges the work that Christopher Montgomery and the Xiph.Org foundation have done in defining the Ogg multimedia project and as part of it the open file format described in this document. The author hopes that providing this document to the Internet community will help in promoting the Ogg multimedia project at http://www.xiph.org/. Many thanks also for the many technical and typo corrections that C. Montgomery and the Ogg community provided as feedback to this RFC.Author's Address Silvia Pfeiffer CSIRO, Australia Locked Bag 17 North Ryde, NSW 2113 Australia Phone: +61 2 9325 3141 EMail: Silvia.Pfeiffer@csiro.au URI: http://www.cmis.csiro.au/Silvia.Pfeiffer/Pfeiffer Informational [Page 14]RFC 3533 OGG May 2003Full Copyright Statement Copyright (C) The Internet Society (2003). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Pfeiffer Informational [Page 15]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -