📄 mpegvideo_altivec.c
字号:
q1 = vec_ctf(qmat[3], QMAT_SHIFT); q2 = vec_ctf(qmat[5], QMAT_SHIFT); q3 = vec_ctf(qmat[7], QMAT_SHIFT); q4 = vec_ctf(qmat[9], QMAT_SHIFT); q5 = vec_ctf(qmat[11], QMAT_SHIFT); q6 = vec_ctf(qmat[13], QMAT_SHIFT); q7 = vec_ctf(qmat[15], QMAT_SHIFT); alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), vec_cmpgt(alt0, zero)); alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), vec_cmpgt(alt1, zero)); alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), vec_cmpgt(alt2, zero)); alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), vec_cmpgt(alt3, zero)); alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), vec_cmpgt(alt4, zero)); alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), vec_cmpgt(alt5, zero)); alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), vec_cmpgt(alt6, zero)); alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), vec_cmpgt(alt7, zero)); } } // Store the data back into the original block { vector signed short data0, data1, data2, data3, data4, data5, data6, data7; data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); { // Clamp for overflow vector signed int max_q_int, min_q_int; vector signed short max_q, min_q; LOAD4(max_q_int, &(s->max_qcoeff)); LOAD4(min_q_int, &(s->min_qcoeff)); max_q = vec_pack(max_q_int, max_q_int); min_q = vec_pack(min_q_int, min_q_int); data0 = vec_max(vec_min(data0, max_q), min_q); data1 = vec_max(vec_min(data1, max_q), min_q); data2 = vec_max(vec_min(data2, max_q), min_q); data4 = vec_max(vec_min(data4, max_q), min_q); data5 = vec_max(vec_min(data5, max_q), min_q); data6 = vec_max(vec_min(data6, max_q), min_q); data7 = vec_max(vec_min(data7, max_q), min_q); } { vector bool char zero_01, zero_23, zero_45, zero_67; vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; vector signed char negOne = vec_splat_s8(-1); vector signed char* scanPtr = (vector signed char*)(s->intra_scantable.inverse); signed char lastNonZeroChar; // Determine the largest non-zero index. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), vec_cmpeq(data1, (vector signed short)zero)); zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), vec_cmpeq(data3, (vector signed short)zero)); zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), vec_cmpeq(data5, (vector signed short)zero)); zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), vec_cmpeq(data7, (vector signed short)zero)); // 64 biggest values scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01); scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23); scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45); scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67); // 32 largest values scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); // 16 largest values scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); // 8 largest values scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); // 4 largest values scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); // 2 largest values scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); // largest value scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); scanIndices_01 = vec_splat(scanIndices_01, 0); vec_ste(scanIndices_01, 0, &lastNonZeroChar); lastNonZero = lastNonZeroChar; // While the data is still in vectors we check for the transpose IDCT permute // and handle it using the vector unit if we can. This is the permute used // by the altivec idct, so it is common when using the altivec dct. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) { TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); } vec_st(data0, 0, data); vec_st(data1, 16, data); vec_st(data2, 32, data); vec_st(data3, 48, data); vec_st(data4, 64, data); vec_st(data5, 80, data); vec_st(data6, 96, data); vec_st(data7, 112, data); } } // special handling of block[0] if (s->mb_intra) { if (!s->h263_aic) { if (n < 4) oldBaseValue /= s->y_dc_scale; else oldBaseValue /= s->c_dc_scale; } // Divide by 8, rounding the result data[0] = (oldBaseValue + 4) >> 3; } // We handled the transpose permutation above and we don't // need to permute the "no" permutation case. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) { ff_block_permute(data, s->dsp.idct_permutation, s->intra_scantable.scantable, lastNonZero); } return lastNonZero;}#undef FOUROF/* AltiVec version of dct_unquantize_h263 this code assumes `block' is 16 bytes-aligned*/void dct_unquantize_h263_altivec(MpegEncContext *s, DCTELEM *block, int n, int qscale){POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1); int i, level, qmul, qadd; int nCoeffs; assert(s->block_last_index[n]>=0);POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1); qadd = (qscale - 1) | 1; qmul = qscale << 1; if (s->mb_intra) { if (!s->h263_aic) { if (n < 4) block[0] = block[0] * s->y_dc_scale; else block[0] = block[0] * s->c_dc_scale; }else qadd = 0; i = 1; nCoeffs= 63; //does not always use zigzag table } else { i = 0; nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ]; } { register const vector signed short vczero = (const vector signed short)vec_splat_s16(0); DECLARE_ALIGNED_16(short, qmul8[]) = { qmul, qmul, qmul, qmul, qmul, qmul, qmul, qmul }; DECLARE_ALIGNED_16(short, qadd8[]) = { qadd, qadd, qadd, qadd, qadd, qadd, qadd, qadd }; DECLARE_ALIGNED_16(short, nqadd8[]) = { -qadd, -qadd, -qadd, -qadd, -qadd, -qadd, -qadd, -qadd }; register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; register vector bool short blockv_null, blockv_neg; register short backup_0 = block[0]; register int j = 0; qmulv = vec_ld(0, qmul8); qaddv = vec_ld(0, qadd8); nqaddv = vec_ld(0, nqadd8);#if 0 // block *is* 16 bytes-aligned, it seems. // first make sure block[j] is 16 bytes-aligned for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) { level = block[j]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } block[j] = level; } }#endif // vectorize all the 16 bytes-aligned blocks // of 8 elements for(; (j + 7) <= nCoeffs ; j+=8) { blockv = vec_ld(j << 1, block); blockv_neg = vec_cmplt(blockv, vczero); blockv_null = vec_cmpeq(blockv, vczero); // choose between +qadd or -qadd as the third operand temp1 = vec_sel(qaddv, nqaddv, blockv_neg); // multiply & add (block{i,i+7} * qmul [+-] qadd) temp1 = vec_mladd(blockv, qmulv, temp1); // put 0 where block[{i,i+7} used to have 0 blockv = vec_sel(temp1, blockv, blockv_null); vec_st(blockv, j << 1, block); } // if nCoeffs isn't a multiple of 8, finish the job // using good old scalar units. // (we could do it using a truncated vector, // but I'm not sure it's worth the hassle) for(; j <= nCoeffs ; j++) { level = block[j]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } block[j] = level; } } if (i == 1) { // cheat. this avoid special-casing the first iteration block[0] = backup_0; } }POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);}extern void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);extern void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);void MPV_common_init_altivec(MpegEncContext *s){ if (s->avctx->lowres==0) { if ((s->avctx->idct_algo == FF_IDCT_AUTO) || (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) { s->dsp.idct_put = idct_put_altivec; s->dsp.idct_add = idct_add_altivec; s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM; } } // Test to make sure that the dct required alignments are met. if ((((long)(s->q_intra_matrix) & 0x0f) != 0) || (((long)(s->q_inter_matrix) & 0x0f) != 0)) { av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned " "to use AltiVec DCT. Reverting to non-AltiVec version.\n"); return; } if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) { av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned " "to use AltiVec DCT. Reverting to non-AltiVec version.\n"); return; } if ((s->avctx->dct_algo == FF_DCT_AUTO) || (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {#if 0 /* seems to cause trouble under some circumstances */ s->dct_quantize = dct_quantize_altivec;#endif s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec; s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -