📄 ac3dec.c
字号:
if(!s->dither_flag[ch]) s->dither_all = 0; } /* dynamic range */ i = !(s->channel_mode); do { if(get_bits1(gbc)) { s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * s->avctx->drc_scale)+1.0; } else if(blk == 0) { s->dynamic_range[i] = 1.0f; } } while(i--); /* coupling strategy */ if (get_bits1(gbc)) { memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); s->cpl_in_use = get_bits1(gbc); if (s->cpl_in_use) { /* coupling in use */ int cpl_begin_freq, cpl_end_freq; /* determine which channels are coupled */ for (ch = 1; ch <= fbw_channels; ch++) s->channel_in_cpl[ch] = get_bits1(gbc); /* phase flags in use */ if (channel_mode == AC3_CHMODE_STEREO) s->phase_flags_in_use = get_bits1(gbc); /* coupling frequency range and band structure */ cpl_begin_freq = get_bits(gbc, 4); cpl_end_freq = get_bits(gbc, 4); if (3 + cpl_end_freq - cpl_begin_freq < 0) { av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); return -1; } s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) { if (get_bits1(gbc)) { s->cpl_band_struct[bnd] = 1; s->num_cpl_bands--; } } s->cpl_band_struct[s->num_cpl_subbands-1] = 0; } else { /* coupling not in use */ for (ch = 1; ch <= fbw_channels; ch++) s->channel_in_cpl[ch] = 0; } } /* coupling coordinates */ if (s->cpl_in_use) { int cpl_coords_exist = 0; for (ch = 1; ch <= fbw_channels; ch++) { if (s->channel_in_cpl[ch]) { if (get_bits1(gbc)) { int master_cpl_coord, cpl_coord_exp, cpl_coord_mant; cpl_coords_exist = 1; master_cpl_coord = 3 * get_bits(gbc, 2); for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { cpl_coord_exp = get_bits(gbc, 4); cpl_coord_mant = get_bits(gbc, 4); if (cpl_coord_exp == 15) s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; else s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; } } } } /* phase flags */ if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) { for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0; } } } /* stereo rematrixing strategy and band structure */ if (channel_mode == AC3_CHMODE_STEREO) { if (get_bits1(gbc)) { s->num_rematrixing_bands = 4; if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61) s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37); for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) s->rematrixing_flags[bnd] = get_bits1(gbc); } } /* exponent strategies for each channel */ s->exp_strategy[CPL_CH] = EXP_REUSE; s->exp_strategy[s->lfe_ch] = EXP_REUSE; for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { if(ch == s->lfe_ch) s->exp_strategy[ch] = get_bits(gbc, 1); else s->exp_strategy[ch] = get_bits(gbc, 2); if(s->exp_strategy[ch] != EXP_REUSE) bit_alloc_stages[ch] = 3; } /* channel bandwidth */ for (ch = 1; ch <= fbw_channels; ch++) { s->start_freq[ch] = 0; if (s->exp_strategy[ch] != EXP_REUSE) { int prev = s->end_freq[ch]; if (s->channel_in_cpl[ch]) s->end_freq[ch] = s->start_freq[CPL_CH]; else { int bandwidth_code = get_bits(gbc, 6); if (bandwidth_code > 60) { av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); return -1; } s->end_freq[ch] = bandwidth_code * 3 + 73; } if(blk > 0 && s->end_freq[ch] != prev) memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); } } s->start_freq[s->lfe_ch] = 0; s->end_freq[s->lfe_ch] = 7; /* decode exponents for each channel */ for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { if (s->exp_strategy[ch] != EXP_REUSE) { int group_size, num_groups; group_size = 3 << (s->exp_strategy[ch] - 1); if(ch == CPL_CH) num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size; else if(ch == s->lfe_ch) num_groups = 2; else num_groups = (s->end_freq[ch] + group_size - 4) / group_size; s->dexps[ch][0] = get_bits(gbc, 4) << !ch; decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0], &s->dexps[ch][s->start_freq[ch]+!!ch]); if(ch != CPL_CH && ch != s->lfe_ch) skip_bits(gbc, 2); /* skip gainrng */ } } /* bit allocation information */ if (get_bits1(gbc)) { s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift; s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift; s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)]; s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)]; s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)]; for(ch=!s->cpl_in_use; ch<=s->channels; ch++) { bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); } } /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */ if (get_bits1(gbc)) { int csnr; csnr = (get_bits(gbc, 6) - 15) << 4; for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */ s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2; s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)]; } memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); } /* coupling leak information */ if (s->cpl_in_use && get_bits1(gbc)) { s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3); s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3); bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); } /* delta bit allocation information */ if (get_bits1(gbc)) { /* delta bit allocation exists (strategy) */ for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) { s->dba_mode[ch] = get_bits(gbc, 2); if (s->dba_mode[ch] == DBA_RESERVED) { av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); return -1; } bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); } /* channel delta offset, len and bit allocation */ for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) { if (s->dba_mode[ch] == DBA_NEW) { s->dba_nsegs[ch] = get_bits(gbc, 3); for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) { s->dba_offsets[ch][seg] = get_bits(gbc, 5); s->dba_lengths[ch][seg] = get_bits(gbc, 4); s->dba_values[ch][seg] = get_bits(gbc, 3); } } } } else if(blk == 0) { for(ch=0; ch<=s->channels; ch++) { s->dba_mode[ch] = DBA_NONE; } } /* Bit allocation */ for(ch=!s->cpl_in_use; ch<=s->channels; ch++) { if(bit_alloc_stages[ch] > 2) { /* Exponent mapping into PSD and PSD integration */ ff_ac3_bit_alloc_calc_psd(s->dexps[ch], s->start_freq[ch], s->end_freq[ch], s->psd[ch], s->band_psd[ch]); } if(bit_alloc_stages[ch] > 1) { /* Compute excitation function, Compute masking curve, and Apply delta bit allocation */ ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch], s->start_freq[ch], s->end_freq[ch], s->fast_gain[ch], (ch == s->lfe_ch), s->dba_mode[ch], s->dba_nsegs[ch], s->dba_offsets[ch], s->dba_lengths[ch], s->dba_values[ch], s->mask[ch]); } if(bit_alloc_stages[ch] > 0) { /* Compute bit allocation */ ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch], s->start_freq[ch], s->end_freq[ch], s->snr_offset[ch], s->bit_alloc_params.floor, s->bap[ch]); } } /* unused dummy data */ if (get_bits1(gbc)) { int skipl = get_bits(gbc, 9); while(skipl--) skip_bits(gbc, 8); } /* unpack the transform coefficients this also uncouples channels if coupling is in use. */ if (get_transform_coeffs(s)) { av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); return -1; } /* recover coefficients if rematrixing is in use */ if(s->channel_mode == AC3_CHMODE_STEREO) do_rematrixing(s); /* apply scaling to coefficients (headroom, dynrng) */ for(ch=1; ch<=s->channels; ch++) { float gain = 2.0f * s->mul_bias; if(s->channel_mode == AC3_CHMODE_DUALMONO) { gain *= s->dynamic_range[ch-1]; } else { gain *= s->dynamic_range[0]; } for(i=0; i<s->end_freq[ch]; i++) { s->transform_coeffs[ch][i] *= gain; } } do_imdct(s); /* downmix output if needed */ if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) && s->fbw_channels == s->out_channels)) { ac3_downmix(s); } /* convert float to 16-bit integer */ for(ch=0; ch<s->out_channels; ch++) { for(i=0; i<256; i++) { s->output[ch][i] += s->add_bias; } s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256); } return 0;}/** * Decode a single AC-3 frame. */static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size){ AC3DecodeContext *s = avctx->priv_data; int16_t *out_samples = (int16_t *)data; int i, blk, ch, err; /* initialize the GetBitContext with the start of valid AC-3 Frame */ init_get_bits(&s->gbc, buf, buf_size * 8); /* parse the syncinfo */ err = ac3_parse_header(s); if(err) { switch(err) { case AC3_PARSE_ERROR_SYNC: av_log(avctx, AV_LOG_ERROR, "frame sync error\n"); break; case AC3_PARSE_ERROR_BSID: av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n"); break; case AC3_PARSE_ERROR_SAMPLE_RATE: av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); break; case AC3_PARSE_ERROR_FRAME_SIZE: av_log(avctx, AV_LOG_ERROR, "invalid frame size\n"); break; default: av_log(avctx, AV_LOG_ERROR, "invalid header\n"); break; } return -1; } /* check that reported frame size fits in input buffer */ if(s->frame_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); return -1; } /* check for crc mismatch */ if(avctx->error_resilience >= FF_ER_CAREFUL) { if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) { av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n"); return -1; } /* TODO: error concealment */ } avctx->sample_rate = s->sample_rate; avctx->bit_rate = s->bit_rate; /* channel config */ s->out_channels = s->channels; if (avctx->request_channels > 0 && avctx->request_channels <= 2 && avctx->request_channels < s->channels) { s->out_channels = avctx->request_channels; s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; } avctx->channels = s->out_channels; /* set downmixing coefficients if needed */ if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) && s->fbw_channels == s->out_channels)) { set_downmix_coeffs(s); } /* parse the audio blocks */ for (blk = 0; blk < NB_BLOCKS; blk++) { if (ac3_parse_audio_block(s, blk)) { av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); *data_size = 0; return s->frame_size; } for (i = 0; i < 256; i++) for (ch = 0; ch < s->out_channels; ch++) *(out_samples++) = s->int_output[ch][i]; } *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); return s->frame_size;}/** * Uninitialize the AC-3 decoder. */static int ac3_decode_end(AVCodecContext *avctx){ AC3DecodeContext *s = avctx->priv_data; ff_mdct_end(&s->imdct_512); ff_mdct_end(&s->imdct_256); return 0;}AVCodec ac3_decoder = { .name = "ac3", .type = CODEC_TYPE_AUDIO, .id = CODEC_ID_AC3, .priv_data_size = sizeof (AC3DecodeContext), .init = ac3_decode_init, .close = ac3_decode_end, .decode = ac3_decode_frame,};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -