📄 svq1enc.c
字号:
/* * SVQ1 Encoder * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *//** * @file svq1enc.c * Sorenson Vector Quantizer #1 (SVQ1) video codec. * For more information of the SVQ1 algorithm, visit: * http://www.pcisys.net/~melanson/codecs/ */#include "avcodec.h"#include "dsputil.h"#include "mpegvideo.h"#include "svq1.h"#include "svq1enc_cb.h"#undef NDEBUG#include <assert.h>typedef struct SVQ1Context { MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX) AVCodecContext *avctx; DSPContext dsp; AVFrame picture; AVFrame current_picture; AVFrame last_picture; PutBitContext pb; GetBitContext gb; PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex int frame_width; int frame_height; /* Y plane block dimensions */ int y_block_width; int y_block_height; /* U & V plane (C planes) block dimensions */ int c_block_width; int c_block_height; uint16_t *mb_type; uint32_t *dummy; int16_t (*motion_val8[3])[2]; int16_t (*motion_val16[3])[2]; int64_t rd_total;} SVQ1Context;static void svq1_write_header(SVQ1Context *s, int frame_type){ int i; /* frame code */ put_bits(&s->pb, 22, 0x20); /* temporal reference (sure hope this is a "don't care") */ put_bits(&s->pb, 8, 0x00); /* frame type */ put_bits(&s->pb, 2, frame_type - 1); if (frame_type == I_TYPE) { /* no checksum since frame code is 0x20 */ /* no embedded string either */ /* output 5 unknown bits (2 + 2 + 1) */ put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */ for (i = 0; i < 7; i++) { if ((ff_svq1_frame_size_table[i].width == s->frame_width) && (ff_svq1_frame_size_table[i].height == s->frame_height)) { put_bits(&s->pb, 3, i); break; } } if (i == 7) { put_bits(&s->pb, 3, 7); put_bits(&s->pb, 12, s->frame_width); put_bits(&s->pb, 12, s->frame_height); } } /* no checksum or extra data (next 2 bits get 0) */ put_bits(&s->pb, 2, 0);}#define QUALITY_THRESHOLD 100#define THRESHOLD_MULTIPLIER 0.6#if defined(HAVE_ALTIVEC)#undef vector#endifstatic int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){ int count, y, x, i, j, split, best_mean, best_score, best_count; int best_vector[6]; int block_sum[7]= {0, 0, 0, 0, 0, 0}; int w= 2<<((level+2)>>1); int h= 2<<((level+1)>>1); int size=w*h; int16_t block[7][256]; const int8_t *codebook_sum, *codebook; const uint16_t (*mean_vlc)[2]; const uint8_t (*multistage_vlc)[2]; best_score=0; //FIXME optimize, this doenst need to be done multiple times if(intra){ codebook_sum= svq1_intra_codebook_sum[level]; codebook= ff_svq1_intra_codebooks[level]; mean_vlc= ff_svq1_intra_mean_vlc; multistage_vlc= ff_svq1_intra_multistage_vlc[level]; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v= src[x + y*stride]; block[0][x + w*y]= v; best_score += v*v; block_sum[0] += v; } } }else{ codebook_sum= svq1_inter_codebook_sum[level]; codebook= ff_svq1_inter_codebooks[level]; mean_vlc= ff_svq1_inter_mean_vlc + 256; multistage_vlc= ff_svq1_inter_multistage_vlc[level]; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v= src[x + y*stride] - ref[x + y*stride]; block[0][x + w*y]= v; best_score += v*v; block_sum[0] += v; } } } best_count=0; best_score -= ((block_sum[0]*block_sum[0])>>(level+3)); best_mean= (block_sum[0] + (size>>1)) >> (level+3); if(level<4){ for(count=1; count<7; count++){ int best_vector_score= INT_MAX; int best_vector_sum=-999, best_vector_mean=-999; const int stage= count-1; const int8_t *vector; for(i=0; i<16; i++){ int sum= codebook_sum[stage*16 + i]; int sqr, diff, score; vector = codebook + stage*size*16 + i*size; sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size); diff= block_sum[stage] - sum; score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow if(score < best_vector_score){ int mean= (diff + (size>>1)) >> (level+3); assert(mean >-300 && mean<300); mean= av_clip(mean, intra?0:-256, 255); best_vector_score= score; best_vector[stage]= i; best_vector_sum= sum; best_vector_mean= mean; } } assert(best_vector_mean != -999); vector= codebook + stage*size*16 + best_vector[stage]*size; for(j=0; j<size; j++){ block[stage+1][j] = block[stage][j] - vector[j]; } block_sum[stage+1]= block_sum[stage] - best_vector_sum; best_vector_score += lambda*(+ 1 + 4*count + multistage_vlc[1+count][1] + mean_vlc[best_vector_mean][1]); if(best_vector_score < best_score){ best_score= best_vector_score; best_count= count; best_mean= best_vector_mean; } } } split=0; if(best_score > threshold && level){ int score=0; int offset= (level&1) ? stride*h/2 : w/2; PutBitContext backup[6]; for(i=level-1; i>=0; i--){ backup[i]= s->reorder_pb[i]; } score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra); score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra); score += lambda; if(score < best_score){ best_score= score; split=1; }else{ for(i=level-1; i>=0; i--){ s->reorder_pb[i]= backup[i]; } } } if (level > 0) put_bits(&s->reorder_pb[level], 1, split); if(!split){ assert((best_mean >= 0 && best_mean<256) || !intra); assert(best_mean >= -256 && best_mean<256); assert(best_count >=0 && best_count<7); assert(level<4 || best_count==0); /* output the encoding */ put_bits(&s->reorder_pb[level], multistage_vlc[1 + best_count][1], multistage_vlc[1 + best_count][0]); put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1], mean_vlc[best_mean][0]); for (i = 0; i < best_count; i++){ assert(best_vector[i]>=0 && best_vector[i]<16); put_bits(&s->reorder_pb[level], 4, best_vector[i]); } for(y=0; y<h; y++){ for(x=0; x<w; x++){ decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean; } } } return best_score;}static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane, int width, int height, int src_stride, int stride){ int x, y; int i; int block_width, block_height; int level; int threshold[6]; const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT); /* figure out the acceptable level thresholds in advance */ threshold[5] = QUALITY_THRESHOLD; for (level = 4; level >= 0; level--) threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER; block_width = (width + 15) / 16; block_height = (height + 15) / 16; if(s->picture.pict_type == P_TYPE){ s->m.avctx= s->avctx; s->m.current_picture_ptr= &s->m.current_picture; s->m.last_picture_ptr = &s->m.last_picture; s->m.last_picture.data[0]= ref_plane; s->m.linesize= s->m.last_picture.linesize[0]= s->m.new_picture.linesize[0]= s->m.current_picture.linesize[0]= stride; s->m.width= width;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -