⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cipher.c

📁 mediastreamer2是开源的网络传输媒体流的库
💻 C
字号:
/* * cipher.c * * cipher meta-functions * * David A. McGrew * Cisco Systems, Inc. *  *//* *	 * Copyright (c) 2001-2006, Cisco Systems, Inc. * All rights reserved. *  * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: *  *   Redistributions of source code must retain the above copyright *   notice, this list of conditions and the following disclaimer. *  *   Redistributions in binary form must reproduce the above *   copyright notice, this list of conditions and the following *   disclaimer in the documentation and/or other materials provided *   with the distribution. *  *   Neither the name of the Cisco Systems, Inc. nor the names of its *   contributors may be used to endorse or promote products derived *   from this software without specific prior written permission. *  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */#include "cipher.h"#include "rand_source.h"        /* used in invertibiltiy tests        */#include "alloc.h"              /* for crypto_alloc(), crypto_free()  */debug_module_t mod_cipher = {  0,                 /* debugging is off by default */  "cipher"           /* printable module name       */};err_status_tcipher_output(cipher_t *c, uint8_t *buffer, int num_octets_to_output) {    /* zeroize the buffer */  octet_string_set_to_zero(buffer, num_octets_to_output);    /* exor keystream into buffer */  return cipher_encrypt(c, buffer, (unsigned int *) &num_octets_to_output);}/* some bookkeeping functions */intcipher_get_key_length(const cipher_t *c) {  return c->key_len;}/*  * cipher_type_self_test(ct) tests a cipher of type ct against test cases * provided in an array of values of key, salt, xtd_seq_num_t, * plaintext, and ciphertext that is known to be good */#define SELF_TEST_BUF_OCTETS 128#define NUM_RAND_TESTS       128#define MAX_KEY_LEN          64err_status_tcipher_type_self_test(const cipher_type_t *ct) {  const cipher_test_case_t *test_case = ct->test_data;  cipher_t *c;  err_status_t status;  uint8_t buffer[SELF_TEST_BUF_OCTETS];  uint8_t buffer2[SELF_TEST_BUF_OCTETS];  unsigned int len;  int i, j, case_num = 0;  debug_print(mod_cipher, "running self-test for cipher %s", 	      ct->description);    /*   * check to make sure that we have at least one test case, and   * return an error if we don't - we need to be paranoid here   */  if (test_case == NULL)    return err_status_cant_check;  /*   * loop over all test cases, perform known-answer tests of both the   * encryption and decryption functions   */    while (test_case != NULL) {    /* allocate cipher */    status = cipher_type_alloc(ct, &c, test_case->key_length_octets);    if (status)      return status;        /*     * test the encrypt function      */    debug_print(mod_cipher, "testing encryption", NULL);            /* initialize cipher */    status = cipher_init(c, test_case->key, direction_encrypt);    if (status) {      cipher_dealloc(c);      return status;    }        /* copy plaintext into test buffer */    if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) {      cipher_dealloc(c);          return err_status_bad_param;    }    for (i=0; i < test_case->plaintext_length_octets; i++)      buffer[i] = test_case->plaintext[i];    debug_print(mod_cipher, "plaintext:    %s",	     octet_string_hex_string(buffer,				     test_case->plaintext_length_octets));    /* set the initialization vector */    status = cipher_set_iv(c, test_case->idx);    if (status) {      cipher_dealloc(c);      return status;    }         /* encrypt */    len = test_case->plaintext_length_octets;    status = cipher_encrypt(c, buffer, &len);    if (status) {      cipher_dealloc(c);      return status;    }        debug_print(mod_cipher, "ciphertext:   %s",	     octet_string_hex_string(buffer,				     test_case->ciphertext_length_octets));    /* compare the resulting ciphertext with that in the test case */    if (len != test_case->ciphertext_length_octets)      return err_status_algo_fail;    status = err_status_ok;    for (i=0; i < test_case->ciphertext_length_octets; i++)      if (buffer[i] != test_case->ciphertext[i]) {	status = err_status_algo_fail;	debug_print(mod_cipher, "test case %d failed", case_num);	debug_print(mod_cipher, "(failure at byte %d)", i);	break;      }    if (status) {      debug_print(mod_cipher, "c computed: %s",	     octet_string_hex_string(buffer,		  2*test_case->plaintext_length_octets));      debug_print(mod_cipher, "c expected: %s",		  octet_string_hex_string(test_case->ciphertext,			  2*test_case->plaintext_length_octets));      cipher_dealloc(c);      return err_status_algo_fail;    }    /*     * test the decrypt function     */    debug_print(mod_cipher, "testing decryption", NULL);        /* re-initialize cipher for decryption */    status = cipher_init(c, test_case->key, direction_decrypt);    if (status) {      cipher_dealloc(c);      return status;    }    /* copy ciphertext into test buffer */    if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) {      cipher_dealloc(c);          return err_status_bad_param;    }    for (i=0; i < test_case->ciphertext_length_octets; i++)      buffer[i] = test_case->ciphertext[i];    debug_print(mod_cipher, "ciphertext:    %s",		octet_string_hex_string(buffer,					test_case->plaintext_length_octets));    /* set the initialization vector */    status = cipher_set_iv(c, test_case->idx);    if (status) {      cipher_dealloc(c);      return status;    }         /* decrypt */    len = test_case->ciphertext_length_octets;    status = cipher_decrypt(c, buffer, &len);    if (status) {      cipher_dealloc(c);      return status;    }        debug_print(mod_cipher, "plaintext:   %s",	     octet_string_hex_string(buffer,				     test_case->plaintext_length_octets));    /* compare the resulting plaintext with that in the test case */    if (len != test_case->plaintext_length_octets)      return err_status_algo_fail;    status = err_status_ok;    for (i=0; i < test_case->plaintext_length_octets; i++)      if (buffer[i] != test_case->plaintext[i]) {	status = err_status_algo_fail;	debug_print(mod_cipher, "test case %d failed", case_num);	debug_print(mod_cipher, "(failure at byte %d)", i);      }    if (status) {      debug_print(mod_cipher, "p computed: %s",	     octet_string_hex_string(buffer,		  2*test_case->plaintext_length_octets));      debug_print(mod_cipher, "p expected: %s",		  octet_string_hex_string(test_case->plaintext,			  2*test_case->plaintext_length_octets));      cipher_dealloc(c);      return err_status_algo_fail;    }    /* deallocate the cipher */    status = cipher_dealloc(c);    if (status)      return status;        /*      * the cipher passed the test case, so move on to the next test     * case in the list; if NULL, we'l proceed to the next test     */       test_case = test_case->next_test_case;    ++case_num;  }    /* now run some random invertibility tests */  /* allocate cipher, using paramaters from the first test case */  test_case = ct->test_data;  status = cipher_type_alloc(ct, &c, test_case->key_length_octets);  if (status)      return status;    rand_source_init();    for (j=0; j < NUM_RAND_TESTS; j++) {    unsigned length;    int plaintext_len;    uint8_t key[MAX_KEY_LEN];    uint8_t  iv[MAX_KEY_LEN];    /* choose a length at random (leaving room for IV and padding) */    length = rand() % (SELF_TEST_BUF_OCTETS - 64);    debug_print(mod_cipher, "random plaintext length %d\n", length);    status = rand_source_get_octet_string(buffer, length);    if (status) return status;    debug_print(mod_cipher, "plaintext:    %s",		octet_string_hex_string(buffer, length));    /* copy plaintext into second buffer */    for (i=0; (unsigned int)i < length; i++)      buffer2[i] = buffer[i];        /* choose a key at random */    if (test_case->key_length_octets > MAX_KEY_LEN)      return err_status_cant_check;    status = rand_source_get_octet_string(key, test_case->key_length_octets);    if (status) return status;   /* chose a random initialization vector */    status = rand_source_get_octet_string(iv, MAX_KEY_LEN);    if (status) return status;            /* initialize cipher */    status = cipher_init(c, key, direction_encrypt);    if (status) {      cipher_dealloc(c);      return status;    }    /* set initialization vector */    status = cipher_set_iv(c, test_case->idx);    if (status) {      cipher_dealloc(c);      return status;    }     /* encrypt buffer with cipher */    plaintext_len = length;    status = cipher_encrypt(c, buffer, &length);    if (status) {      cipher_dealloc(c);      return status;    }    debug_print(mod_cipher, "ciphertext:   %s",		octet_string_hex_string(buffer, length));    /*      * re-initialize cipher for decryption, re-set the iv, then     * decrypt the ciphertext     */    status = cipher_init(c, key, direction_decrypt);    if (status) {      cipher_dealloc(c);      return status;    }    status = cipher_set_iv(c, test_case->idx);    if (status) {      cipher_dealloc(c);      return status;    }     status = cipher_decrypt(c, buffer, &length);    if (status) {      cipher_dealloc(c);      return status;    }        debug_print(mod_cipher, "plaintext[2]: %s",		octet_string_hex_string(buffer, length));        /* compare the resulting plaintext with the original one */    if (length != plaintext_len)      return err_status_algo_fail;    status = err_status_ok;    for (i=0; i < plaintext_len; i++)      if (buffer[i] != buffer2[i]) {	status = err_status_algo_fail;	debug_print(mod_cipher, "random test case %d failed", case_num);	debug_print(mod_cipher, "(failure at byte %d)", i);      }    if (status) {      cipher_dealloc(c);      return err_status_algo_fail;    }          }  return err_status_ok;}/* * cipher_bits_per_second(c, l, t) computes (an estimate of) the * number of bits that a cipher implementation can encrypt in a second *  * c is a cipher (which MUST be allocated and initialized already), l * is the length in octets of the test data to be encrypted, and t is * the number of trials * * if an error is encountered, the value 0 is returned */uint64_tcipher_bits_per_second(cipher_t *c, int octets_in_buffer, int num_trials) {  int i;  v128_t nonce;  clock_t timer;  unsigned char *enc_buf;  unsigned int len = octets_in_buffer;  enc_buf = (unsigned char*) crypto_alloc(octets_in_buffer);  if (enc_buf == NULL)    return 0;  /* indicate bad parameters by returning null */    /* time repeated trials */  v128_set_to_zero(&nonce);  timer = clock();  for(i=0; i < num_trials; i++, nonce.v32[3] = i) {    cipher_set_iv(c, &nonce);    cipher_encrypt(c, enc_buf, &len);  }  timer = clock() - timer;  crypto_free(enc_buf);  if (timer == 0) {    /* Too fast! */    return 0;  }    return (uint64_t)CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -