⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sha1.c

📁 mediastreamer2是开源的网络传输媒体流的库
💻 C
字号:
/* * sha1.c * * an implementation of the Secure Hash Algorithm v.1 (SHA-1), * specified in FIPS 180-1 * * David A. McGrew * Cisco Systems, Inc. *//* *	 * Copyright (c) 2001-2006, Cisco Systems, Inc. * All rights reserved. *  * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: *  *   Redistributions of source code must retain the above copyright *   notice, this list of conditions and the following disclaimer. *  *   Redistributions in binary form must reproduce the above *   copyright notice, this list of conditions and the following *   disclaimer in the documentation and/or other materials provided *   with the distribution. *  *   Neither the name of the Cisco Systems, Inc. nor the names of its *   contributors may be used to endorse or promote products derived *   from this software without specific prior written permission. *  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */#include "sha1.h"debug_module_t mod_sha1 = {  0,                 /* debugging is off by default */  "sha-1"            /* printable module name       */};/* SN == Rotate left N bits */#define S1(X)  ((X << 1)  | (X >> 31))#define S5(X)  ((X << 5)  | (X >> 27))#define S30(X) ((X << 30) | (X >> 2))#define f0(B,C,D) ((B & C) | (~B & D))              #define f1(B,C,D) (B ^ C ^ D)#define f2(B,C,D) ((B & C) | (B & D) | (C & D))#define f3(B,C,D) (B ^ C ^ D)/*  * nota bene: the variable K0 appears in the curses library, so we  * give longer names to these variables to avoid spurious warnings  * on systems that uses curses */uint32_t SHA_K0 = 0x5A827999;   /* Kt for 0  <= t <= 19 */uint32_t SHA_K1 = 0x6ED9EBA1;   /* Kt for 20 <= t <= 39 */uint32_t SHA_K2 = 0x8F1BBCDC;   /* Kt for 40 <= t <= 59 */uint32_t SHA_K3 = 0xCA62C1D6;   /* Kt for 60 <= t <= 79 */voidsha1(const uint8_t *msg,  int octets_in_msg, uint32_t hash_value[5]) {  sha1_ctx_t ctx;  sha1_init(&ctx);  sha1_update(&ctx, msg, octets_in_msg);  sha1_final(&ctx, hash_value);}/* *  sha1_core(M, H) computes the core compression function, where M is *  the next part of the message (in network byte order) and H is the *  intermediate state { H0, H1, ...} (in host byte order) * *  this function does not do any of the padding required in the *  complete SHA1 function * *  this function is used in the SEAL 3.0 key setup routines *  (crypto/cipher/seal.c) */voidsha1_core(const uint32_t M[16], uint32_t hash_value[5]) {  uint32_t H0;  uint32_t H1;  uint32_t H2;  uint32_t H3;  uint32_t H4;  uint32_t W[80];  uint32_t A, B, C, D, E, TEMP;  int t;  /* copy hash_value into H0, H1, H2, H3, H4 */  H0 = hash_value[0];  H1 = hash_value[1];  H2 = hash_value[2];  H3 = hash_value[3];  H4 = hash_value[4];  /* copy/xor message into array */      W[0]  = be32_to_cpu(M[0]);  W[1]  = be32_to_cpu(M[1]);  W[2]  = be32_to_cpu(M[2]);  W[3]  = be32_to_cpu(M[3]);  W[4]  = be32_to_cpu(M[4]);  W[5]  = be32_to_cpu(M[5]);  W[6]  = be32_to_cpu(M[6]);  W[7]  = be32_to_cpu(M[7]);  W[8]  = be32_to_cpu(M[8]);  W[9]  = be32_to_cpu(M[9]);  W[10] = be32_to_cpu(M[10]);  W[11] = be32_to_cpu(M[11]);  W[12] = be32_to_cpu(M[12]);  W[13] = be32_to_cpu(M[13]);  W[14] = be32_to_cpu(M[14]);  W[15] = be32_to_cpu(M[15]);  TEMP = W[13] ^ W[8]  ^ W[2]  ^ W[0];  W[16] = S1(TEMP);  TEMP = W[14] ^ W[9]  ^ W[3]  ^ W[1];  W[17] = S1(TEMP);  TEMP = W[15] ^ W[10] ^ W[4]  ^ W[2];  W[18] = S1(TEMP);  TEMP = W[16] ^ W[11] ^ W[5]  ^ W[3];  W[19] = S1(TEMP);  TEMP = W[17] ^ W[12] ^ W[6]  ^ W[4];  W[20] = S1(TEMP);  TEMP = W[18] ^ W[13] ^ W[7]  ^ W[5];  W[21] = S1(TEMP);  TEMP = W[19] ^ W[14] ^ W[8]  ^ W[6];  W[22] = S1(TEMP);  TEMP = W[20] ^ W[15] ^ W[9]  ^ W[7];  W[23] = S1(TEMP);  TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];  W[24] = S1(TEMP);  TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];  W[25] = S1(TEMP);  TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);  TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);  TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);  TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);  TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);  TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);  /* process the remainder of the array */  for (t=32; t < 80; t++) {    TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];    W[t] = S1(TEMP);        }  A = H0; B = H1; C = H2; D = H3; E = H4;  for (t=0; t < 20; t++) {    TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;    E = D; D = C; C = S30(B); B = A; A = TEMP;  }  for (   ; t < 40; t++) {    TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;    E = D; D = C; C = S30(B); B = A; A = TEMP;  }  for (   ; t < 60; t++) {    TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;    E = D; D = C; C = S30(B); B = A; A = TEMP;  }  for (   ; t < 80; t++) {    TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;    E = D; D = C; C = S30(B); B = A; A = TEMP;  }  hash_value[0] = H0 + A;  hash_value[1] = H1 + B;  hash_value[2] = H2 + C;  hash_value[3] = H3 + D;  hash_value[4] = H4 + E;  return;}voidsha1_init(sha1_ctx_t *ctx) {   /* initialize state vector */  ctx->H[0] = 0x67452301;  ctx->H[1] = 0xefcdab89;  ctx->H[2] = 0x98badcfe;  ctx->H[3] = 0x10325476;  ctx->H[4] = 0xc3d2e1f0;  /* indicate that message buffer is empty */  ctx->octets_in_buffer = 0;  /* reset message bit-count to zero */  ctx->num_bits_in_msg = 0;}voidsha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {  int i;  uint8_t *buf = (uint8_t *)ctx->M;  /* update message bit-count */  ctx->num_bits_in_msg += octets_in_msg * 8;  /* loop over 16-word blocks of M */  while (octets_in_msg > 0) {        if (octets_in_msg + ctx->octets_in_buffer >= 64) {      /*        * copy words of M into msg buffer until that buffer is full,       * converting them into host byte order as needed       */      octets_in_msg -= (64 - ctx->octets_in_buffer);      for (i=ctx->octets_in_buffer; i < 64; i++) 	buf[i] = *msg++;      ctx->octets_in_buffer = 0;      /* process a whole block */      debug_print(mod_sha1, "(update) running sha1_core()", NULL);      sha1_core(ctx->M, ctx->H);    } else {      debug_print(mod_sha1, "(update) not running sha1_core()", NULL);      for (i=ctx->octets_in_buffer; 	   i < (ctx->octets_in_buffer + octets_in_msg); i++)	buf[i] = *msg++;      ctx->octets_in_buffer += octets_in_msg;      octets_in_msg = 0;    }  }}/* * sha1_final(ctx, output) computes the result for ctx and copies it * into the twenty octets located at *output */voidsha1_final(sha1_ctx_t *ctx, uint32_t *output) {  uint32_t A, B, C, D, E, TEMP;  uint32_t W[80];    int i, t;  /*   * process the remaining octets_in_buffer, padding and terminating as   * necessary   */  {    int tail = ctx->octets_in_buffer % 4;        /* copy/xor message into array */    for (i=0; i < (ctx->octets_in_buffer+3)/4; i++)       W[i]  = be32_to_cpu(ctx->M[i]);    /* set the high bit of the octet immediately following the message */    switch (tail) {    case (3):      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;      W[i] = 0x0;      break;    case (2):            W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;      W[i] = 0x0;      break;    case (1):      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;      W[i] = 0x0;      break;    case (0):      W[i] = 0x80000000;      break;    }        /* zeroize remaining words */    for (i++   ; i < 15; i++)      W[i] = 0x0;    /*      * if there is room at the end of the word array, then set the     * last word to the bit-length of the message; otherwise, set that     * word to zero and then we need to do one more run of the     * compression algo.     */    if (ctx->octets_in_buffer < 56)       W[15] = ctx->num_bits_in_msg;    else if (ctx->octets_in_buffer < 60)      W[15] = 0x0;    /* process the word array */    for (t=16; t < 80; t++) {      TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];      W[t] = S1(TEMP);    }    A = ctx->H[0];     B = ctx->H[1];     C = ctx->H[2];     D = ctx->H[3];     E = ctx->H[4];    for (t=0; t < 20; t++) {      TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    for (   ; t < 40; t++) {      TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    for (   ; t < 60; t++) {      TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    for (   ; t < 80; t++) {      TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    ctx->H[0] += A;    ctx->H[1] += B;    ctx->H[2] += C;    ctx->H[3] += D;    ctx->H[4] += E;  }  debug_print(mod_sha1, "(final) running sha1_core()", NULL);  if (ctx->octets_in_buffer >= 56) {    debug_print(mod_sha1, "(final) running sha1_core() again", NULL);    /* we need to do one final run of the compression algo */    /*      * set initial part of word array to zeros, and set the      * final part to the number of bits in the message     */    for (i=0; i < 15; i++)      W[i] = 0x0;    W[15] = ctx->num_bits_in_msg;    /* process the word array */    for (t=16; t < 80; t++) {      TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];      W[t] = S1(TEMP);    }    A = ctx->H[0];     B = ctx->H[1];     C = ctx->H[2];     D = ctx->H[3];     E = ctx->H[4];    for (t=0; t < 20; t++) {      TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    for (   ; t < 40; t++) {      TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    for (   ; t < 60; t++) {      TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    for (   ; t < 80; t++) {      TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;      E = D; D = C; C = S30(B); B = A; A = TEMP;    }    ctx->H[0] += A;    ctx->H[1] += B;    ctx->H[2] += C;    ctx->H[3] += D;    ctx->H[4] += E;  }  /* copy result into output buffer */  output[0] = be32_to_cpu(ctx->H[0]);  output[1] = be32_to_cpu(ctx->H[1]);  output[2] = be32_to_cpu(ctx->H[2]);  output[3] = be32_to_cpu(ctx->H[3]);  output[4] = be32_to_cpu(ctx->H[4]);  /* indicate that message buffer in context is empty */  ctx->octets_in_buffer = 0;  return;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -