📄 e_aep.c
字号:
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
{
int initialised = ((aep_dso == NULL) ? 0 : 1);
switch(cmd)
{
case AEP_CMD_SO_PATH:
if(p == NULL)
{
AEPHKerr(AEPHK_F_AEP_CTRL,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if(initialised)
{
AEPHKerr(AEPHK_F_AEP_CTRL,
AEPHK_R_ALREADY_LOADED);
return 0;
}
return set_AEP_LIBNAME((const char*)p);
default:
break;
}
AEPHKerr(AEPHK_F_AEP_CTRL,AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
return 0;
}
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx)
{
int to_return = 0;
int r_len = 0;
AEP_CONNECTION_HNDL hConnection;
AEP_RV rv;
r_len = BN_num_bits(m);
/* Perform in software if modulus is too large for hardware. */
if (r_len > max_key_len){
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return BN_mod_exp(r, a, p, m, ctx);
}
/*Grab a connection from the pool*/
rv = aep_get_connection(&hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_GET_HANDLE_FAILED);
return BN_mod_exp(r, a, p, m, ctx);
}
/*To the card with the mod exp*/
rv = p_AEP_ModExp(hConnection,(void*)a, (void*)p,(void*)m, (void*)r,NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_MOD_EXP_FAILED);
rv = aep_close_connection(hConnection);
return BN_mod_exp(r, a, p, m, ctx);
}
/*Return the connection to the pool*/
rv = aep_return_connection(hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_RETURN_CONNECTION_FAILED);
goto err;
}
to_return = 1;
err:
return to_return;
}
#ifndef OPENSSL_NO_RSA
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *q, const BIGNUM *dmp1,
const BIGNUM *dmq1,const BIGNUM *iqmp, BN_CTX *ctx)
{
AEP_RV rv = AEP_R_OK;
AEP_CONNECTION_HNDL hConnection;
/*Grab a connection from the pool*/
rv = aep_get_connection(&hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_GET_HANDLE_FAILED);
return FAIL_TO_SW;
}
/*To the card with the mod exp*/
rv = p_AEP_ModExpCrt(hConnection,(void*)a, (void*)p, (void*)q, (void*)dmp1,(void*)dmq1,
(void*)iqmp,(void*)r,NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_MOD_EXP_CRT_FAILED);
rv = aep_close_connection(hConnection);
return FAIL_TO_SW;
}
/*Return the connection to the pool*/
rv = aep_return_connection(hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_RETURN_CONNECTION_FAILED);
goto err;
}
err:
return rv;
}
#endif
#ifdef AEPRAND
static int aep_rand(unsigned char *buf,int len )
{
AEP_RV rv = AEP_R_OK;
AEP_CONNECTION_HNDL hConnection;
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
/*Can the request be serviced with what's already in the buffer?*/
if (len <= rand_block_bytes)
{
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
rand_block_bytes -= len;
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
}
else
/*If not the get another block of random bytes*/
{
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
rv = aep_get_connection(&hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_HANDLE_FAILED);
goto err_nounlock;
}
if (len > RAND_BLK_SIZE)
{
rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED);
goto err_nounlock;
}
}
else
{
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, &rand_block[0], NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED);
goto err;
}
rand_block_bytes = RAND_BLK_SIZE;
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
rand_block_bytes -= len;
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
}
rv = aep_return_connection(hConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
goto err_nounlock;
}
}
return 1;
err:
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
err_nounlock:
return 0;
}
static int aep_rand_status(void)
{
return 1;
}
#endif
#ifndef OPENSSL_NO_RSA
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
int to_return = 0;
AEP_RV rv = AEP_R_OK;
if (!aep_dso)
{
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_NOT_LOADED);
goto err;
}
/*See if we have all the necessary bits for a crt*/
if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp)
{
rv = aep_mod_exp_crt(r0,I,rsa->p,rsa->q, rsa->dmp1,rsa->dmq1,rsa->iqmp,ctx);
if (rv == FAIL_TO_SW){
const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
to_return = (*meth->rsa_mod_exp)(r0, I, rsa, ctx);
goto err;
}
else if (rv != AEP_R_OK)
goto err;
}
else
{
if (!rsa->d || !rsa->n)
{
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_MISSING_KEY_COMPONENTS);
goto err;
}
rv = aep_mod_exp(r0,I,rsa->d,rsa->n,ctx);
if (rv != AEP_R_OK)
goto err;
}
to_return = 1;
err:
return to_return;
}
#endif
#ifndef OPENSSL_NO_DSA
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
BIGNUM t;
int to_return = 0;
BN_init(&t);
/* let rr = a1 ^ p1 mod m */
if (!aep_mod_exp(rr,a1,p1,m,ctx)) goto end;
/* let t = a2 ^ p2 mod m */
if (!aep_mod_exp(&t,a2,p2,m,ctx)) goto end;
/* let rr = rr * t mod m */
if (!BN_mod_mul(rr,rr,&t,m,ctx)) goto end;
to_return = 1;
end:
BN_free(&t);
return to_return;
}
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return aep_mod_exp(r, a, p, m, ctx);
}
#endif
#ifndef OPENSSL_NO_RSA
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
{
return aep_mod_exp(r, a, p, m, ctx);
}
#endif
#ifndef OPENSSL_NO_DH
/* This function is aliased to mod_exp (with the dh and mont dropped). */
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return aep_mod_exp(r, a, p, m, ctx);
}
#endif
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection)
{
int count;
AEP_RV rv = AEP_R_OK;
/*Get the current process id*/
pid_t curr_pid;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
#ifndef NETWARE_CLIB
curr_pid = getpid();
#else
curr_pid = GetThreadID();
#endif
/*Check if this is the first time this is being called from the current
process*/
if (recorded_pid != curr_pid)
{
/*Remember our pid so we can check if we're in a new process*/
recorded_pid = curr_pid;
/*Call Finalize to make sure we have not inherited some data
from a parent process*/
p_AEP_Finalize();
/*Initialise the AEP API*/
rv = p_AEP_Initialize(NULL);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_INIT_FAILURE);
recorded_pid = 0;
goto end;
}
/*Set the AEP big num call back functions*/
rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum,
&ConvertAEPBigNum);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_SETBNCALLBACK_FAILURE);
recorded_pid = 0;
goto end;
}
#ifdef AEPRAND
/*Reset the rand byte count*/
rand_block_bytes = 0;
#endif
/*Init the structures*/
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
aep_app_conn_table[count].conn_state = NotConnected;
aep_app_conn_table[count].conn_hndl = 0;
}
/*Open a connection*/
rv = p_AEP_OpenConnection(phConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
recorded_pid = 0;
goto end;
}
aep_app_conn_table[0].conn_state = InUse;
aep_app_conn_table[0].conn_hndl = *phConnection;
goto end;
}
/*Check the existing connections to see if we can find a free one*/
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_state == Connected)
{
aep_app_conn_table[count].conn_state = InUse;
*phConnection = aep_app_conn_table[count].conn_hndl;
goto end;
}
}
/*If no connections available, we're going to have to try
to open a new one*/
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_state == NotConnected)
{
/*Open a connection*/
rv = p_AEP_OpenConnection(phConnection);
if (rv != AEP_R_OK)
{
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
goto end;
}
aep_app_conn_table[count].conn_state = InUse;
aep_app_conn_table[count].conn_hndl = *phConnection;
goto end;
}
}
rv = AEP_R_GENERAL_ERROR;
end:
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return rv;
}
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection)
{
int count;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
/*Find the connection item that matches this connection handle*/
for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_hndl == hConnection)
{
aep_app_conn_table[count].conn_state = Connected;
break;
}
}
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return AEP_R_OK;
}
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection)
{
int count;
AEP_RV rv = AEP_R_OK;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
/*Find the connection item that matches this connection handle*/
for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
if (aep_app_conn_table[count].conn_hndl == hConnection)
{
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
if (rv != AEP_R_OK)
goto end;
aep_app_conn_table[count].conn_state = NotConnected;
aep_app_conn_table[count].conn_hndl = 0;
break;
}
}
end:
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return rv;
}
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use)
{
int count;
AEP_RV rv = AEP_R_OK;
*in_use = 0;
if (use_engine_lock) CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
{
switch (aep_app_conn_table[count].conn_state)
{
case Connected:
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
if (rv != AEP_R_OK)
goto end;
aep_app_conn_table[count].conn_state = NotConnected;
aep_app_conn_table[count].conn_hndl = 0;
break;
case InUse:
(*in_use)++;
break;
case NotConnected:
break;
}
}
end:
if (use_engine_lock) CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
return rv;
}
/*BigNum call back functions, used to convert OpenSSL bignums into AEP bignums.
Note only 32bit Openssl build support*/
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize)
{
BIGNUM* bn;
/*Cast the ArbBigNum pointer to our BIGNUM struct*/
bn = (BIGNUM*) ArbBigNum;
#ifdef SIXTY_FOUR_BIT_LONG
*BigNumSize = bn->top << 3;
#else
/*Size of the bignum in bytes is equal to the bn->top (no of 32 bit
words) multiplies by 4*/
*BigNumSize = bn->top << 2;
#endif
return AEP_R_OK;
}
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
unsigned char* AEP_BigNum)
{
BIGNUM* bn;
#ifndef SIXTY_FOUR_BIT_LONG
unsigned char* buf;
int i;
#endif
/*Cast the ArbBigNum pointer to our BIGNUM struct*/
bn = (BIGNUM*) ArbBigNum;
#ifdef SIXTY_FOUR_BIT_LONG
memcpy(AEP_BigNum, bn->d, BigNumSize);
#else
/*Must copy data into a (monotone) least significant byte first format
performing endian conversion if necessary*/
for(i=0;i<bn->top;i++)
{
buf = (unsigned char*)&bn->d[i];
*((AEP_U32*)AEP_BigNum) = (AEP_U32)
((unsigned) buf[1] << 8 | buf[0]) |
((unsigned) buf[3] << 8 | buf[2]) << 16;
AEP_BigNum += 4;
}
#endif
return AEP_R_OK;
}
/*Turn an AEP Big Num back to a user big num*/
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
unsigned char* AEP_BigNum)
{
BIGNUM* bn;
#ifndef SIXTY_FOUR_BIT_LONG
int i;
#endif
bn = (BIGNUM*)ArbBigNum;
/*Expand the result bn so that it can hold our big num.
Size is in bits*/
bn_expand(bn, (int)(BigNumSize << 3));
#ifdef SIXTY_FOUR_BIT_LONG
bn->top = BigNumSize >> 3;
if((BigNumSize & 7) != 0)
bn->top++;
memset(bn->d, 0, bn->top << 3);
memcpy(bn->d, AEP_BigNum, BigNumSize);
#else
bn->top = BigNumSize >> 2;
for(i=0;i<bn->top;i++)
{
bn->d[i] = (AEP_U32)
((unsigned) AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 |
((unsigned) AEP_BigNum[1] << 8 | AEP_BigNum[0]);
AEP_BigNum += 4;
}
#endif
return AEP_R_OK;
}
#endif /* !OPENSSL_NO_HW_AEP */
#endif /* !OPENSSL_NO_HW */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -