📄 s3_pkt.c
字号:
/* ssl/s3_pkt.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] *//* ==================================================================== * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */#include <stdio.h>#include <errno.h>#define USE_SOCKETS#include "ssl_locl.h"#include <openssl/evp.h>#include <openssl/buffer.h>static int do_ssl3_write(SSL *s, int type, const unsigned char *buf, unsigned int len, int create_empty_fragment);static int ssl3_get_record(SSL *s);int ssl3_read_n(SSL *s, int n, int max, int extend) { /* If extend == 0, obtain new n-byte packet; if extend == 1, increase * packet by another n bytes. * The packet will be in the sub-array of s->s3->rbuf.buf specified * by s->packet and s->packet_length. * (If s->read_ahead is set, 'max' bytes may be stored in rbuf * [plus s->packet_length bytes if extend == 1].) */ int i,off,newb; if (!extend) { /* start with empty packet ... */ if (s->s3->rbuf.left == 0) s->s3->rbuf.offset = 0; s->packet = s->s3->rbuf.buf + s->s3->rbuf.offset; s->packet_length = 0; /* ... now we can act as if 'extend' was set */ } /* extend reads should not span multiple packets for DTLS */ if ( SSL_version(s) == DTLS1_VERSION && extend) { if ( s->s3->rbuf.left > 0 && n > s->s3->rbuf.left) n = s->s3->rbuf.left; } /* if there is enough in the buffer from a previous read, take some */ if (s->s3->rbuf.left >= (int)n) { s->packet_length+=n; s->s3->rbuf.left-=n; s->s3->rbuf.offset+=n; return(n); } /* else we need to read more data */ if (!s->read_ahead) max=n; { /* avoid buffer overflow */ int max_max = s->s3->rbuf.len - s->packet_length; if (max > max_max) max = max_max; } if (n > max) /* does not happen */ { SSLerr(SSL_F_SSL3_READ_N,ERR_R_INTERNAL_ERROR); return -1; } off = s->packet_length; newb = s->s3->rbuf.left; /* Move any available bytes to front of buffer: * 'off' bytes already pointed to by 'packet', * 'newb' extra ones at the end */ if (s->packet != s->s3->rbuf.buf) { /* off > 0 */ memmove(s->s3->rbuf.buf, s->packet, off+newb); s->packet = s->s3->rbuf.buf; } while (newb < n) { /* Now we have off+newb bytes at the front of s->s3->rbuf.buf and need * to read in more until we have off+n (up to off+max if possible) */ clear_sys_error(); if (s->rbio != NULL) { s->rwstate=SSL_READING; i=BIO_read(s->rbio, &(s->s3->rbuf.buf[off+newb]), max-newb); } else { SSLerr(SSL_F_SSL3_READ_N,SSL_R_READ_BIO_NOT_SET); i = -1; } if (i <= 0) { s->s3->rbuf.left = newb; return(i); } newb+=i; } /* done reading, now the book-keeping */ s->s3->rbuf.offset = off + n; s->s3->rbuf.left = newb - n; s->packet_length += n; s->rwstate=SSL_NOTHING; return(n); }/* Call this to get a new input record. * It will return <= 0 if more data is needed, normally due to an error * or non-blocking IO. * When it finishes, one packet has been decoded and can be found in * ssl->s3->rrec.type - is the type of record * ssl->s3->rrec.data, - data * ssl->s3->rrec.length, - number of bytes *//* used only by ssl3_read_bytes */static int ssl3_get_record(SSL *s) { int ssl_major,ssl_minor,al; int enc_err,n,i,ret= -1; SSL3_RECORD *rr; SSL_SESSION *sess; unsigned char *p; unsigned char md[EVP_MAX_MD_SIZE]; short version; unsigned int mac_size; int clear=0; size_t extra; int decryption_failed_or_bad_record_mac = 0; unsigned char *mac = NULL; rr= &(s->s3->rrec); sess=s->session; if (s->options & SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER) extra=SSL3_RT_MAX_EXTRA; else extra=0; if (extra != s->s3->rbuf.len - SSL3_RT_MAX_PACKET_SIZE) { /* actually likely an application error: SLS_OP_MICROSOFT_BIG_SSLV3_BUFFER * set after ssl3_setup_buffers() was done */ SSLerr(SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR); return -1; }again: /* check if we have the header */ if ( (s->rstate != SSL_ST_READ_BODY) || (s->packet_length < SSL3_RT_HEADER_LENGTH)) { n=ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, s->s3->rbuf.len, 0); if (n <= 0) return(n); /* error or non-blocking */ s->rstate=SSL_ST_READ_BODY; p=s->packet; /* Pull apart the header into the SSL3_RECORD */ rr->type= *(p++); ssl_major= *(p++); ssl_minor= *(p++); version=(ssl_major<<8)|ssl_minor; n2s(p,rr->length); /* Lets check version */ if (s->first_packet) { s->first_packet=0; } else { if (version != s->version) { SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_WRONG_VERSION_NUMBER); /* Send back error using their * version number :-) */ s->version=version; al=SSL_AD_PROTOCOL_VERSION; goto f_err; } } if ((version>>8) != SSL3_VERSION_MAJOR) { SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_WRONG_VERSION_NUMBER); goto err; } if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH+extra) { al=SSL_AD_RECORD_OVERFLOW; SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_PACKET_LENGTH_TOO_LONG); goto f_err; } /* now s->rstate == SSL_ST_READ_BODY */ } /* s->rstate == SSL_ST_READ_BODY, get and decode the data */ if (rr->length > s->packet_length-SSL3_RT_HEADER_LENGTH) { /* now s->packet_length == SSL3_RT_HEADER_LENGTH */ i=rr->length; n=ssl3_read_n(s,i,i,1); if (n <= 0) return(n); /* error or non-blocking io */ /* now n == rr->length, * and s->packet_length == SSL3_RT_HEADER_LENGTH + rr->length */ } s->rstate=SSL_ST_READ_HEADER; /* set state for later operations */ /* At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length, * and we have that many bytes in s->packet */ rr->input= &(s->packet[SSL3_RT_HEADER_LENGTH]); /* ok, we can now read from 's->packet' data into 'rr' * rr->input points at rr->length bytes, which * need to be copied into rr->data by either * the decryption or by the decompression * When the data is 'copied' into the rr->data buffer, * rr->input will be pointed at the new buffer */ /* We now have - encrypted [ MAC [ compressed [ plain ] ] ] * rr->length bytes of encrypted compressed stuff. */ /* check is not needed I believe */ if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH+extra) { al=SSL_AD_RECORD_OVERFLOW; SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_ENCRYPTED_LENGTH_TOO_LONG); goto f_err; } /* decrypt in place in 'rr->input' */ rr->data=rr->input; enc_err = s->method->ssl3_enc->enc(s,0); if (enc_err <= 0) { if (enc_err == 0) /* SSLerr() and ssl3_send_alert() have been called */ goto err; /* Otherwise enc_err == -1, which indicates bad padding * (rec->length has not been changed in this case). * To minimize information leaked via timing, we will perform * the MAC computation anyway. */ decryption_failed_or_bad_record_mac = 1; }#ifdef TLS_DEBUGprintf("dec %d\n",rr->length);{ unsigned int z; for (z=0; z<rr->length; z++) printf("%02X%c",rr->data[z],((z+1)%16)?' ':'\n'); }printf("\n");#endif /* r->length is now the compressed data plus mac */ if ( (sess == NULL) || (s->enc_read_ctx == NULL) || (s->read_hash == NULL)) clear=1; if (!clear) { mac_size=EVP_MD_size(s->read_hash); if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+extra+mac_size) {#if 0 /* OK only for stream ciphers (then rr->length is visible from ciphertext anyway) */ al=SSL_AD_RECORD_OVERFLOW; SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_PRE_MAC_LENGTH_TOO_LONG); goto f_err;#else decryption_failed_or_bad_record_mac = 1;#endif } /* check the MAC for rr->input (it's in mac_size bytes at the tail) */ if (rr->length >= mac_size) { rr->length -= mac_size; mac = &rr->data[rr->length]; } else { /* record (minus padding) is too short to contain a MAC */#if 0 /* OK only for stream ciphers */ al=SSL_AD_DECODE_ERROR; SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_LENGTH_TOO_SHORT); goto f_err;#else decryption_failed_or_bad_record_mac = 1; rr->length = 0;#endif } i=s->method->ssl3_enc->mac(s,md,0); if (mac == NULL || memcmp(md, mac, mac_size) != 0) { decryption_failed_or_bad_record_mac = 1; } } if (decryption_failed_or_bad_record_mac) { /* A separate 'decryption_failed' alert was introduced with TLS 1.0, * SSL 3.0 only has 'bad_record_mac'. But unless a decryption * failure is directly visible from the ciphertext anyway, * we should not reveal which kind of error occured -- this * might become visible to an attacker (e.g. via a logfile) */ al=SSL_AD_BAD_RECORD_MAC; SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); goto f_err; } /* r->length is now just compressed */ if (s->expand != NULL) { if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+extra) { al=SSL_AD_RECORD_OVERFLOW; SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_COMPRESSED_LENGTH_TOO_LONG); goto f_err; } if (!ssl3_do_uncompress(s))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -