⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_gf2m.c

📁 mediastreamer2是开源的网络传输媒体流的库
💻 C
📖 第 1 页 / 共 2 页
字号:
/* crypto/bn/bn_gf2m.c *//* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * The Elliptic Curve Public-Key Crypto Library (ECC Code) included * herein is developed by SUN MICROSYSTEMS, INC., and is contributed * to the OpenSSL project. * * The ECC Code is licensed pursuant to the OpenSSL open source * license provided below. * * In addition, Sun covenants to all licensees who provide a reciprocal * covenant with respect to their own patents if any, not to sue under * current and future patent claims necessarily infringed by the making, * using, practicing, selling, offering for sale and/or otherwise * disposing of the ECC Code as delivered hereunder (or portions thereof), * provided that such covenant shall not apply: *  1) for code that a licensee deletes from the ECC Code; *  2) separates from the ECC Code; or *  3) for infringements caused by: *       i) the modification of the ECC Code or *      ii) the combination of the ECC Code with other software or *          devices where such combination causes the infringement. * * The software is originally written by Sheueling Chang Shantz and * Douglas Stebila of Sun Microsystems Laboratories. * *//* NOTE: This file is licensed pursuant to the OpenSSL license below * and may be modified; but after modifications, the above covenant * may no longer apply!  In such cases, the corresponding paragraph * ["In addition, Sun covenants ... causes the infringement."] and * this note can be edited out; but please keep the Sun copyright * notice and attribution. *//* ==================================================================== * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer.  * * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in *    the documentation and/or other materials provided with the *    distribution. * * 3. All advertising materials mentioning features or use of this *    software must display the following acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to *    endorse or promote products derived from this software without *    prior written permission. For written permission, please contact *    openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" *    nor may "OpenSSL" appear in their names without prior written *    permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following *    acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com).  This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */#include <assert.h>#include <limits.h>#include <stdio.h>#include "cryptlib.h"#include "bn_lcl.h"/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */#define MAX_ITERATIONS 50static const BN_ULONG SQR_tb[16] =  {     0,     1,     4,     5,    16,    17,    20,    21,       64,    65,    68,    69,    80,    81,    84,    85 };/* Platform-specific macros to accelerate squaring. */#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)#define SQR1(w) \    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]#define SQR0(w) \    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]#endif#ifdef THIRTY_TWO_BIT#define SQR1(w) \    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]#define SQR0(w) \    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]#endif#ifdef SIXTEEN_BIT#define SQR1(w) \    SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]#define SQR0(w) \    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]#endif#ifdef EIGHT_BIT#define SQR1(w) \    SQR_tb[(w) >>  4 & 0xF]#define SQR0(w) \    SQR_tb[(w)       & 15]#endif/* Product of two polynomials a, b each with degree < BN_BITS2 - 1, * result is a polynomial r with degree < 2 * BN_BITS - 1 * The caller MUST ensure that the variables have the right amount * of space allocated. */#ifdef EIGHT_BITstatic void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)	{	register BN_ULONG h, l, s;	BN_ULONG tab[4], top1b = a >> 7;	register BN_ULONG a1, a2;	a1 = a & (0x7F); a2 = a1 << 1;	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;	s = tab[b      & 0x3]; l  = s;	s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;	s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;	s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;		/* compensate for the top bit of a */	if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } 	*r1 = h; *r0 = l;	} #endif#ifdef SIXTEEN_BITstatic void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)	{	register BN_ULONG h, l, s;	BN_ULONG tab[4], top1b = a >> 15; 	register BN_ULONG a1, a2;	a1 = a & (0x7FFF); a2 = a1 << 1;	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;	s = tab[b      & 0x3]; l  = s;	s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;	s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;	s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;	s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;	s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;	s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;	s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;	/* compensate for the top bit of a */	if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } 	*r1 = h; *r0 = l;	} #endif#ifdef THIRTY_TWO_BITstatic void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)	{	register BN_ULONG h, l, s;	BN_ULONG tab[8], top2b = a >> 30; 	register BN_ULONG a1, a2, a4;	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;	s = tab[b       & 0x7]; l  = s;	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;	/* compensate for the top two bits of a */	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 	*r1 = h; *r0 = l;	} #endif#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)	{	register BN_ULONG h, l, s;	BN_ULONG tab[16], top3b = a >> 61;	register BN_ULONG a1, a2, a4, a8;	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;	s = tab[b       & 0xF]; l  = s;	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;	/* compensate for the top three bits of a */	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 	*r1 = h; *r0 = l;	} #endif/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, * result is a polynomial r with degree < 4 * BN_BITS2 - 1 * The caller MUST ensure that the variables have the right amount * of space allocated. */static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)	{	BN_ULONG m1, m0;	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);	bn_GF2m_mul_1x1(r+1, r, a0, b0);	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */	}/* Add polynomials a and b and store result in r; r could be a or b, a and b  * could be equal; r is the bitwise XOR of a and b. */int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)	{	int i;	const BIGNUM *at, *bt;	bn_check_top(a);	bn_check_top(b);	if (a->top < b->top) { at = b; bt = a; }	else { at = a; bt = b; }	bn_wexpand(r, at->top);	for (i = 0; i < bt->top; i++)		{		r->d[i] = at->d[i] ^ bt->d[i];		}	for (; i < at->top; i++)		{		r->d[i] = at->d[i];		}		r->top = at->top;	bn_correct_top(r);		return 1;	}/* Some functions allow for representation of the irreducible polynomials * as an int[], say p.  The irreducible f(t) is then of the form: *     t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. *//* Performs modular reduction of a and store result in r.  r could be a. */int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])	{	int j, k;	int n, dN, d0, d1;	BN_ULONG zz, *z;	bn_check_top(a);	if (!p[0])		{		/* reduction mod 1 => return 0 */		BN_zero(r);		return 1;		}	/* Since the algorithm does reduction in the r value, if a != r, copy	 * the contents of a into r so we can do reduction in r. 	 */	if (a != r)		{		if (!bn_wexpand(r, a->top)) return 0;		for (j = 0; j < a->top; j++)			{			r->d[j] = a->d[j];			}		r->top = a->top;		}	z = r->d;	/* start reduction */	dN = p[0] / BN_BITS2;  	for (j = r->top - 1; j > dN;)		{		zz = z[j];		if (z[j] == 0) { j--; continue; }		z[j] = 0;		for (k = 1; p[k] != 0; k++)			{			/* reducing component t^p[k] */			n = p[0] - p[k];			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;			n /= BN_BITS2; 			z[j-n] ^= (zz>>d0);			if (d0) z[j-n-1] ^= (zz<<d1);			}		/* reducing component t^0 */		n = dN;  		d0 = p[0] % BN_BITS2;		d1 = BN_BITS2 - d0;		z[j-n] ^= (zz >> d0);		if (d0) z[j-n-1] ^= (zz << d1);		}	/* final round of reduction */	while (j == dN)		{		d0 = p[0] % BN_BITS2;		zz = z[dN] >> d0;		if (zz == 0) break;		d1 = BN_BITS2 - d0;				if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */		z[0] ^= zz; /* reduction t^0 component */		for (k = 1; p[k] != 0; k++)			{			BN_ULONG tmp_ulong;			/* reducing component t^p[k]*/			n = p[k] / BN_BITS2;   			d0 = p[k] % BN_BITS2;			d1 = BN_BITS2 - d0;			z[n] ^= (zz << d0);			tmp_ulong = zz >> d1;                        if (d0 && tmp_ulong)                                z[n+1] ^= tmp_ulong;			}				}	bn_correct_top(r);	return 1;	}/* Performs modular reduction of a by p and store result in r.  r could be a. * * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper * function is only provided for convenience; for best performance, use the  * BN_GF2m_mod_arr function. */int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)	{	int ret = 0;	const int max = BN_num_bits(p);	unsigned int *arr=NULL;	bn_check_top(a);	bn_check_top(p);	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;	ret = BN_GF2m_poly2arr(p, arr, max);	if (!ret || ret > max)		{		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);		goto err;		}	ret = BN_GF2m_mod_arr(r, a, arr);	bn_check_top(r);err:	if (arr) OPENSSL_free(arr);	return ret;	}/* Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r.  r could be a or b; a could be b. */int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)	{	int zlen, i, j, k, ret = 0;	BIGNUM *s;	BN_ULONG x1, x0, y1, y0, zz[4];	bn_check_top(a);	bn_check_top(b);	if (a == b)		{		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);		}	BN_CTX_start(ctx);	if ((s = BN_CTX_get(ctx)) == NULL) goto err;		zlen = a->top + b->top + 4;	if (!bn_wexpand(s, zlen)) goto err;	s->top = zlen;	for (i = 0; i < zlen; i++) s->d[i] = 0;	for (j = 0; j < b->top; j += 2)		{		y0 = b->d[j];		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];		for (i = 0; i < a->top; i += 2)			{			x0 = a->d[i];			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];			}		}	bn_correct_top(s);	if (BN_GF2m_mod_arr(r, s, p))		ret = 1;	bn_check_top(r);err:	BN_CTX_end(ctx);	return ret;	}/* Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r.  r could be a or b; a could equal b. * * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper * function is only provided for convenience; for best performance, use the  * BN_GF2m_mod_mul_arr function. */int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)	{	int ret = 0;	const int max = BN_num_bits(p);	unsigned int *arr=NULL;	bn_check_top(a);	bn_check_top(b);	bn_check_top(p);	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;	ret = BN_GF2m_poly2arr(p, arr, max);	if (!ret || ret > max)		{		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);		goto err;		}	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);	bn_check_top(r);err:	if (arr) OPENSSL_free(arr);	return ret;	}/* Square a, reduce the result mod p, and store it in a.  r could be a. */int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)	{	int i, ret = 0;	BIGNUM *s;	bn_check_top(a);	BN_CTX_start(ctx);	if ((s = BN_CTX_get(ctx)) == NULL) return 0;	if (!bn_wexpand(s, 2 * a->top)) goto err;	for (i = a->top - 1; i >= 0; i--)		{		s->d[2*i+1] = SQR1(a->d[i]);		s->d[2*i  ] = SQR0(a->d[i]);		}	s->top = 2 * a->top;	bn_correct_top(s);	if (!BN_GF2m_mod_arr(r, s, p)) goto err;	bn_check_top(r);	ret = 1;err:	BN_CTX_end(ctx);	return ret;	}/* Square a, reduce the result mod p, and store it in a.  r could be a. *

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -