📄 bn_mul.c
字号:
/* crypto/bn/bn_mul.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#ifndef BN_DEBUG# undef NDEBUG /* avoid conflicting definitions */# define NDEBUG#endif#include <stdio.h>#include <assert.h>#include "cryptlib.h"#include "bn_lcl.h"#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)/* Here follows specialised variants of bn_add_words() and bn_sub_words(). They have the property performing operations on arrays of different sizes. The sizes of those arrays is expressed through cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, which is the delta between the two lengths, calculated as len(a)-len(b). All lengths are the number of BN_ULONGs... For the operations that require a result array as parameter, it must have the length cl+abs(dl). These functions should probably end up in bn_asm.c as soon as there are assembler counterparts for the systems that use assembler files. */BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { BN_ULONG c, t; assert(cl >= 0); c = bn_sub_words(r, a, b, cl); if (dl == 0) return c; r += cl; a += cl; b += cl; if (dl < 0) {#ifdef BN_COUNT fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);#endif for (;;) { t = b[0]; r[0] = (0-t-c)&BN_MASK2; if (t != 0) c=1; if (++dl >= 0) break; t = b[1]; r[1] = (0-t-c)&BN_MASK2; if (t != 0) c=1; if (++dl >= 0) break; t = b[2]; r[2] = (0-t-c)&BN_MASK2; if (t != 0) c=1; if (++dl >= 0) break; t = b[3]; r[3] = (0-t-c)&BN_MASK2; if (t != 0) c=1; if (++dl >= 0) break; b += 4; r += 4; } } else { int save_dl = dl;#ifdef BN_COUNT fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);#endif while(c) { t = a[0]; r[0] = (t-c)&BN_MASK2; if (t != 0) c=0; if (--dl <= 0) break; t = a[1]; r[1] = (t-c)&BN_MASK2; if (t != 0) c=0; if (--dl <= 0) break; t = a[2]; r[2] = (t-c)&BN_MASK2; if (t != 0) c=0; if (--dl <= 0) break; t = a[3]; r[3] = (t-c)&BN_MASK2; if (t != 0) c=0; if (--dl <= 0) break; save_dl = dl; a += 4; r += 4; } if (dl > 0) {#ifdef BN_COUNT fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);#endif if (save_dl > dl) { switch (save_dl - dl) { case 1: r[1] = a[1]; if (--dl <= 0) break; case 2: r[2] = a[2]; if (--dl <= 0) break; case 3: r[3] = a[3]; if (--dl <= 0) break; } a += 4; r += 4; } } if (dl > 0) {#ifdef BN_COUNT fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);#endif for(;;) { r[0] = a[0]; if (--dl <= 0) break; r[1] = a[1]; if (--dl <= 0) break; r[2] = a[2]; if (--dl <= 0) break; r[3] = a[3]; if (--dl <= 0) break; a += 4; r += 4; } } } return c; }#endifBN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { BN_ULONG c, l, t; assert(cl >= 0); c = bn_add_words(r, a, b, cl); if (dl == 0) return c; r += cl; a += cl; b += cl; if (dl < 0) { int save_dl = dl;#ifdef BN_COUNT fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);#endif while (c) { l=(c+b[0])&BN_MASK2; c=(l < c); r[0]=l; if (++dl >= 0) break; l=(c+b[1])&BN_MASK2; c=(l < c); r[1]=l; if (++dl >= 0) break; l=(c+b[2])&BN_MASK2; c=(l < c); r[2]=l; if (++dl >= 0) break; l=(c+b[3])&BN_MASK2; c=(l < c); r[3]=l; if (++dl >= 0) break; save_dl = dl; b+=4; r+=4; } if (dl < 0) {#ifdef BN_COUNT fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);#endif if (save_dl < dl) { switch (dl - save_dl) { case 1: r[1] = b[1]; if (++dl >= 0) break; case 2: r[2] = b[2]; if (++dl >= 0) break; case 3: r[3] = b[3]; if (++dl >= 0) break; } b += 4; r += 4; } } if (dl < 0) {#ifdef BN_COUNT fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);#endif for(;;) { r[0] = b[0]; if (++dl >= 0) break; r[1] = b[1]; if (++dl >= 0) break; r[2] = b[2]; if (++dl >= 0) break; r[3] = b[3]; if (++dl >= 0) break; b += 4; r += 4; } } } else { int save_dl = dl;#ifdef BN_COUNT fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);#endif while (c) { t=(a[0]+c)&BN_MASK2; c=(t < c); r[0]=t; if (--dl <= 0) break; t=(a[1]+c)&BN_MASK2; c=(t < c); r[1]=t; if (--dl <= 0) break; t=(a[2]+c)&BN_MASK2; c=(t < c); r[2]=t; if (--dl <= 0) break; t=(a[3]+c)&BN_MASK2; c=(t < c); r[3]=t; if (--dl <= 0) break; save_dl = dl; a+=4; r+=4; }#ifdef BN_COUNT fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);#endif if (dl > 0) { if (save_dl > dl) { switch (save_dl - dl) { case 1: r[1] = a[1]; if (--dl <= 0) break; case 2: r[2] = a[2]; if (--dl <= 0) break; case 3: r[3] = a[3]; if (--dl <= 0) break; } a += 4; r += 4; } } if (dl > 0) {#ifdef BN_COUNT fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);#endif for(;;) { r[0] = a[0]; if (--dl <= 0) break; r[1] = a[1]; if (--dl <= 0) break; r[2] = a[2]; if (--dl <= 0) break; r[3] = a[3]; if (--dl <= 0) break; a += 4; r += 4; } } } return c; }#ifdef BN_RECURSION/* Karatsuba recursive multiplication algorithm * (cf. Knuth, The Art of Computer Programming, Vol. 2) *//* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { int n=n2/2,c1,c2; int tna=n+dna, tnb=n+dnb; unsigned int neg,zero; BN_ULONG ln,lo,*p;# ifdef BN_COUNT fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);# endif# ifdef BN_MUL_COMBA# if 0 if (n2 == 4) { bn_mul_comba4(r,a,b); return; }# endif /* Only call bn_mul_comba 8 if n2 == 8 and the * two arrays are complete [steve] */ if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r,a,b); return; }# endif /* BN_MUL_COMBA */ /* Else do normal multiply */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r,a,n2+dna,b,n2+dnb); if ((dna + dnb) < 0) memset(&r[2*n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); zero=neg=0; switch (c1*3+c2) { case -4: bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ break; case -3: zero=1; break; case -2: bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ neg=1; break; case -1: case 0: case 1: zero=1; break; case 2: bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ neg=1; break; case 3: zero=1; break; case 4: bn_sub_part_words(t, a, &(a[n]),tna,n-tna); bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); break; }# ifdef BN_MUL_COMBA if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take extra args to do this well */ { if (!zero) bn_mul_comba4(&(t[n2]),t,&(t[n])); else memset(&(t[n2]),0,8*sizeof(BN_ULONG)); bn_mul_comba4(r,a,b); bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could take extra args to do this well */ { if (!zero) bn_mul_comba8(&(t[n2]),t,&(t[n])); else memset(&(t[n2]),0,16*sizeof(BN_ULONG)); bn_mul_comba8(r,a,b); bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); } else# endif /* BN_MUL_COMBA */ { p= &(t[n2*2]); if (!zero) bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); else memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); bn_mul_recursive(r,a,b,n,0,0,p); bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); if (neg) /* if t[32] is negative */ { c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); } else { /* Might have a carry */ c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); if (c1) { p= &(r[n+n2]); lo= *p; ln=(lo+c1)&BN_MASK2; *p=ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln=(lo+1)&BN_MASK2; *p=ln; } while (ln == 0); } } }/* n+tn is the word length * t needs to be n*4 is size, as does r */void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i,j,n2=n*2; int c1,c2,neg,zero; BN_ULONG ln,lo,*p;# ifdef BN_COUNT fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n", tna, n, tnb, n);# endif if (n < 8) { bn_mul_normal(r,a,n+tna,b,n+tnb); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); zero=neg=0; switch (c1*3+c2) { case -4: bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ break; case -3: zero=1; /* break; */ case -2: bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ neg=1; break; case -1:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -