⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_gcd.c

📁 mediastreamer2是开源的网络传输媒体流的库
💻 C
字号:
/* crypto/bn/bn_gcd.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. *  * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to.  The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code.  The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). *  * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. *  * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *    "This product includes cryptographic software written by *     Eric Young (eay@cryptsoft.com)" *    The word 'cryptographic' can be left out if the rouines from the library *    being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from  *    the apps directory (application code) you must include an acknowledgement: *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" *  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. *  * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed.  i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] *//* ==================================================================== * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer.  * * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in *    the documentation and/or other materials provided with the *    distribution. * * 3. All advertising materials mentioning features or use of this *    software must display the following acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to *    endorse or promote products derived from this software without *    prior written permission. For written permission, please contact *    openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" *    nor may "OpenSSL" appear in their names without prior written *    permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following *    acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com).  This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */#include "cryptlib.h"#include "bn_lcl.h"static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)	{	BIGNUM *a,*b,*t;	int ret=0;	bn_check_top(in_a);	bn_check_top(in_b);	BN_CTX_start(ctx);	a = BN_CTX_get(ctx);	b = BN_CTX_get(ctx);	if (a == NULL || b == NULL) goto err;	if (BN_copy(a,in_a) == NULL) goto err;	if (BN_copy(b,in_b) == NULL) goto err;	a->neg = 0;	b->neg = 0;	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }	t=euclid(a,b);	if (t == NULL) goto err;	if (BN_copy(r,t) == NULL) goto err;	ret=1;err:	BN_CTX_end(ctx);	bn_check_top(r);	return(ret);	}static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)	{	BIGNUM *t;	int shifts=0;	bn_check_top(a);	bn_check_top(b);	/* 0 <= b <= a */	while (!BN_is_zero(b))		{		/* 0 < b <= a */		if (BN_is_odd(a))			{			if (BN_is_odd(b))				{				if (!BN_sub(a,a,b)) goto err;				if (!BN_rshift1(a,a)) goto err;				if (BN_cmp(a,b) < 0)					{ t=a; a=b; b=t; }				}			else		/* a odd - b even */				{				if (!BN_rshift1(b,b)) goto err;				if (BN_cmp(a,b) < 0)					{ t=a; a=b; b=t; }				}			}		else			/* a is even */			{			if (BN_is_odd(b))				{				if (!BN_rshift1(a,a)) goto err;				if (BN_cmp(a,b) < 0)					{ t=a; a=b; b=t; }				}			else		/* a even - b even */				{				if (!BN_rshift1(a,a)) goto err;				if (!BN_rshift1(b,b)) goto err;				shifts++;				}			}		/* 0 <= b <= a */		}	if (shifts)		{		if (!BN_lshift(a,a,shifts)) goto err;		}	bn_check_top(a);	return(a);err:	return(NULL);	}/* solves ax == 1 (mod n) */BIGNUM *BN_mod_inverse(BIGNUM *in,	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)	{	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;	BIGNUM *ret=NULL;	int sign;	bn_check_top(a);	bn_check_top(n);	BN_CTX_start(ctx);	A = BN_CTX_get(ctx);	B = BN_CTX_get(ctx);	X = BN_CTX_get(ctx);	D = BN_CTX_get(ctx);	M = BN_CTX_get(ctx);	Y = BN_CTX_get(ctx);	T = BN_CTX_get(ctx);	if (T == NULL) goto err;	if (in == NULL)		R=BN_new();	else		R=in;	if (R == NULL) goto err;	BN_one(X);	BN_zero(Y);	if (BN_copy(B,a) == NULL) goto err;	if (BN_copy(A,n) == NULL) goto err;	A->neg = 0;	if (B->neg || (BN_ucmp(B, A) >= 0))		{		if (!BN_nnmod(B, B, A, ctx)) goto err;		}	sign = -1;	/* From  B = a mod |n|,  A = |n|  it follows that	 *	 *      0 <= B < A,	 *     -sign*X*a  ==  B   (mod |n|),	 *      sign*Y*a  ==  A   (mod |n|).	 */	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))		{		/* Binary inversion algorithm; requires odd modulus.		 * This is faster than the general algorithm if the modulus		 * is sufficiently small (about 400 .. 500 bits on 32-bit		 * sytems, but much more on 64-bit systems) */		int shift;				while (!BN_is_zero(B))			{			/*			 *      0 < B < |n|,			 *      0 < A <= |n|,			 * (1) -sign*X*a  ==  B   (mod |n|),			 * (2)  sign*Y*a  ==  A   (mod |n|)			 */			/* Now divide  B  by the maximum possible power of two in the integers,			 * and divide  X  by the same value mod |n|.			 * When we're done, (1) still holds. */			shift = 0;			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */				{				shift++;								if (BN_is_odd(X))					{					if (!BN_uadd(X, X, n)) goto err;					}				/* now X is even, so we can easily divide it by two */				if (!BN_rshift1(X, X)) goto err;				}			if (shift > 0)				{				if (!BN_rshift(B, B, shift)) goto err;				}			/* Same for  A  and  Y.  Afterwards, (2) still holds. */			shift = 0;			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */				{				shift++;								if (BN_is_odd(Y))					{					if (!BN_uadd(Y, Y, n)) goto err;					}				/* now Y is even */				if (!BN_rshift1(Y, Y)) goto err;				}			if (shift > 0)				{				if (!BN_rshift(A, A, shift)) goto err;				}						/* We still have (1) and (2).			 * Both  A  and  B  are odd.			 * The following computations ensure that			 *			 *     0 <= B < |n|,			 *      0 < A < |n|,			 * (1) -sign*X*a  ==  B   (mod |n|),			 * (2)  sign*Y*a  ==  A   (mod |n|),			 *			 * and that either  A  or  B  is even in the next iteration.			 */			if (BN_ucmp(B, A) >= 0)				{				/* -sign*(X + Y)*a == B - A  (mod |n|) */				if (!BN_uadd(X, X, Y)) goto err;				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that				 * actually makes the algorithm slower */				if (!BN_usub(B, B, A)) goto err;				}			else				{				/*  sign*(X + Y)*a == A - B  (mod |n|) */				if (!BN_uadd(Y, Y, X)) goto err;				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */				if (!BN_usub(A, A, B)) goto err;				}			}		}	else		{		/* general inversion algorithm */		while (!BN_is_zero(B))			{			BIGNUM *tmp;						/*			 *      0 < B < A,			 * (*) -sign*X*a  ==  B   (mod |n|),			 *      sign*Y*a  ==  A   (mod |n|)			 */						/* (D, M) := (A/B, A%B) ... */			if (BN_num_bits(A) == BN_num_bits(B))				{				if (!BN_one(D)) goto err;				if (!BN_sub(M,A,B)) goto err;				}			else if (BN_num_bits(A) == BN_num_bits(B) + 1)				{				/* A/B is 1, 2, or 3 */				if (!BN_lshift1(T,B)) goto err;				if (BN_ucmp(A,T) < 0)					{					/* A < 2*B, so D=1 */					if (!BN_one(D)) goto err;					if (!BN_sub(M,A,B)) goto err;					}				else					{					/* A >= 2*B, so D=2 or D=3 */					if (!BN_sub(M,A,T)) goto err;					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */					if (BN_ucmp(A,D) < 0)						{						/* A < 3*B, so D=2 */						if (!BN_set_word(D,2)) goto err;						/* M (= A - 2*B) already has the correct value */						}					else						{						/* only D=3 remains */						if (!BN_set_word(D,3)) goto err;						/* currently  M = A - 2*B,  but we need  M = A - 3*B */						if (!BN_sub(M,M,B)) goto err;						}					}				}			else				{				if (!BN_div(D,M,A,B,ctx)) goto err;				}						/* Now			 *      A = D*B + M;			 * thus we have			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).			 */						tmp=A; /* keep the BIGNUM object, the value does not matter */						/* (A, B) := (B, A mod B) ... */			A=B;			B=M;			/* ... so we have  0 <= B < A  again */						/* Since the former  M  is now  B  and the former  B  is now  A,			 * (**) translates into			 *       sign*Y*a  ==  D*A + B    (mod |n|),			 * i.e.			 *       sign*Y*a - D*A  ==  B    (mod |n|).			 * Similarly, (*) translates into			 *      -sign*X*a  ==  A          (mod |n|).			 *			 * Thus,			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),			 * i.e.			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).			 *			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at			 *      -sign*X*a  ==  B   (mod |n|),			 *       sign*Y*a  ==  A   (mod |n|).			 * Note that  X  and  Y  stay non-negative all the time.			 */						/* most of the time D is very small, so we can optimize tmp := D*X+Y */			if (BN_is_one(D))				{				if (!BN_add(tmp,X,Y)) goto err;				}			else				{				if (BN_is_word(D,2))					{					if (!BN_lshift1(tmp,X)) goto err;					}				else if (BN_is_word(D,4))					{					if (!BN_lshift(tmp,X,2)) goto err;					}				else if (D->top == 1)					{					if (!BN_copy(tmp,X)) goto err;					if (!BN_mul_word(tmp,D->d[0])) goto err;					}				else					{					if (!BN_mul(tmp,D,X,ctx)) goto err;					}				if (!BN_add(tmp,tmp,Y)) goto err;				}						M=Y; /* keep the BIGNUM object, the value does not matter */			Y=X;			X=tmp;			sign = -sign;			}		}			/*	 * The while loop (Euclid's algorithm) ends when	 *      A == gcd(a,n);	 * we have	 *       sign*Y*a  ==  A  (mod |n|),	 * where  Y  is non-negative.	 */	if (sign < 0)		{		if (!BN_sub(Y,n,Y)) goto err;		}	/* Now  Y*a  ==  A  (mod |n|).  */		if (BN_is_one(A))		{		/* Y*a == 1  (mod |n|) */		if (!Y->neg && BN_ucmp(Y,n) < 0)			{			if (!BN_copy(R,Y)) goto err;			}		else			{			if (!BN_nnmod(R,Y,n,ctx)) goto err;			}		}	else		{		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);		goto err;		}	ret=R;err:	if ((ret == NULL) && (in == NULL)) BN_free(R);	BN_CTX_end(ctx);	bn_check_top(ret);	return(ret);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -