⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_sqrt.c

📁 mediastreamer2是开源的网络传输媒体流的库
💻 C
字号:
/* crypto/bn/bn_sqrt.c *//* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> * and Bodo Moeller for the OpenSSL project. *//* ==================================================================== * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer.  * * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in *    the documentation and/or other materials provided with the *    distribution. * * 3. All advertising materials mentioning features or use of this *    software must display the following acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to *    endorse or promote products derived from this software without *    prior written permission. For written permission, please contact *    openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" *    nor may "OpenSSL" appear in their names without prior written *    permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following *    acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com).  This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */#include "cryptlib.h"#include "bn_lcl.h"BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* Returns 'ret' such that *      ret^2 == a (mod p), * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course * in Algebraic Computational Number Theory", algorithm 1.5.1). * 'p' must be prime! */	{	BIGNUM *ret = in;	int err = 1;	int r;	BIGNUM *A, *b, *q, *t, *x, *y;	int e, i, j;		if (!BN_is_odd(p) || BN_abs_is_word(p, 1))		{		if (BN_abs_is_word(p, 2))			{			if (ret == NULL)				ret = BN_new();			if (ret == NULL)				goto end;			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))				{				if (ret != in)					BN_free(ret);				return NULL;				}			bn_check_top(ret);			return ret;			}		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);		return(NULL);		}	if (BN_is_zero(a) || BN_is_one(a))		{		if (ret == NULL)			ret = BN_new();		if (ret == NULL)			goto end;		if (!BN_set_word(ret, BN_is_one(a)))			{			if (ret != in)				BN_free(ret);			return NULL;			}		bn_check_top(ret);		return ret;		}	BN_CTX_start(ctx);	A = BN_CTX_get(ctx);	b = BN_CTX_get(ctx);	q = BN_CTX_get(ctx);	t = BN_CTX_get(ctx);	x = BN_CTX_get(ctx);	y = BN_CTX_get(ctx);	if (y == NULL) goto end;		if (ret == NULL)		ret = BN_new();	if (ret == NULL) goto end;	/* A = a mod p */	if (!BN_nnmod(A, a, p, ctx)) goto end;	/* now write  |p| - 1  as  2^e*q  where  q  is odd */	e = 1;	while (!BN_is_bit_set(p, e))		e++;	/* we'll set  q  later (if needed) */	if (e == 1)		{		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse		 * modulo  (|p|-1)/2,  and square roots can be computed		 * directly by modular exponentiation.		 * We have		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.		 */		if (!BN_rshift(q, p, 2)) goto end;		q->neg = 0;		if (!BN_add_word(q, 1)) goto end;		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;		err = 0;		goto vrfy;		}		if (e == 2)		{		/* |p| == 5  (mod 8)		 *		 * In this case  2  is always a non-square since		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.		 * So if  a  really is a square, then  2*a  is a non-square.		 * Thus for		 *      b := (2*a)^((|p|-5)/8),		 *      i := (2*a)*b^2		 * we have		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)		 *         = (2*a)^((p-1)/2)		 *         = -1;		 * so if we set		 *      x := a*b*(i-1),		 * then		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)		 *         = a^2 * b^2 * (-2*i)		 *         = a*(-i)*(2*a*b^2)		 *         = a*(-i)*i		 *         = a.		 *		 * (This is due to A.O.L. Atkin, 		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,		 * November 1992.)		 */		/* t := 2*a */		if (!BN_mod_lshift1_quick(t, A, p)) goto end;		/* b := (2*a)^((|p|-5)/8) */		if (!BN_rshift(q, p, 3)) goto end;		q->neg = 0;		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;		/* y := b^2 */		if (!BN_mod_sqr(y, b, p, ctx)) goto end;		/* t := (2*a)*b^2 - 1*/		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;		if (!BN_sub_word(t, 1)) goto end;		/* x = a*b*t */		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;		if (!BN_copy(ret, x)) goto end;		err = 0;		goto vrfy;		}		/* e > 2, so we really have to use the Tonelli/Shanks algorithm.	 * First, find some  y  that is not a square. */	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */	q->neg = 0;	i = 2;	do		{		/* For efficiency, try small numbers first;		 * if this fails, try random numbers.		 */		if (i < 22)			{			if (!BN_set_word(y, i)) goto end;			}		else			{			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;			if (BN_ucmp(y, p) >= 0)				{				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;				}			/* now 0 <= y < |p| */			if (BN_is_zero(y))				if (!BN_set_word(y, i)) goto end;			}				r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */		if (r < -1) goto end;		if (r == 0)			{			/* m divides p */			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);			goto end;			}		}	while (r == 1 && ++i < 82);		if (r != -1)		{		/* Many rounds and still no non-square -- this is more likely		 * a bug than just bad luck.		 * Even if  p  is not prime, we should have found some  y		 * such that r == -1.		 */		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);		goto end;		}	/* Here's our actual 'q': */	if (!BN_rshift(q, q, e)) goto end;	/* Now that we have some non-square, we can find an element	 * of order  2^e  by computing its q'th power. */	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;	if (BN_is_one(y))		{		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);		goto end;		}	/* Now we know that (if  p  is indeed prime) there is an integer	 * k,  0 <= k < 2^e,  such that	 *	 *      a^q * y^k == 1   (mod p).	 *	 * As  a^q  is a square and  y  is not,  k  must be even.	 * q+1  is even, too, so there is an element	 *	 *     X := a^((q+1)/2) * y^(k/2),	 *	 * and it satisfies	 *	 *     X^2 = a^q * a     * y^k	 *         = a,	 *	 * so it is the square root that we are looking for.	 */		/* t := (q-1)/2  (note that  q  is odd) */	if (!BN_rshift1(t, q)) goto end;		/* x := a^((q-1)/2) */	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */		{		if (!BN_nnmod(t, A, p, ctx)) goto end;		if (BN_is_zero(t))			{			/* special case: a == 0  (mod p) */			BN_zero(ret);			err = 0;			goto end;			}		else			if (!BN_one(x)) goto end;		}	else		{		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;		if (BN_is_zero(x))			{			/* special case: a == 0  (mod p) */			BN_zero(ret);			err = 0;			goto end;			}		}	/* b := a*x^2  (= a^q) */	if (!BN_mod_sqr(b, x, p, ctx)) goto end;	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;		/* x := a*x    (= a^((q+1)/2)) */	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;	while (1)		{		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E		 * where  E  refers to the original value of  e,  which we		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).		 *		 * We have  a*b = x^2,		 *    y^2^(e-1) = -1,		 *    b^2^(e-1) = 1.		 */		if (BN_is_one(b))			{			if (!BN_copy(ret, x)) goto end;			err = 0;			goto vrfy;			}		/* find smallest  i  such that  b^(2^i) = 1 */		i = 1;		if (!BN_mod_sqr(t, b, p, ctx)) goto end;		while (!BN_is_one(t))			{			i++;			if (i == e)				{				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);				goto end;				}			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;			}				/* t := y^2^(e - i - 1) */		if (!BN_copy(t, y)) goto end;		for (j = e - i - 1; j > 0; j--)			{			if (!BN_mod_sqr(t, t, p, ctx)) goto end;			}		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;		e = i;		} vrfy:	if (!err)		{		/* verify the result -- the input might have been not a square		 * (test added in 0.9.8) */				if (!BN_mod_sqr(x, ret, p, ctx))			err = 1;				if (!err && 0 != BN_cmp(x, A))			{			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);			err = 1;			}		} end:	if (err)		{		if (ret != NULL && ret != in)			{			BN_clear_free(ret);			}		ret = NULL;		}	BN_CTX_end(ctx);	bn_check_top(ret);	return ret;	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -