⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rc4-ia64.s

📁 mediastreamer2是开源的网络传输媒体流的库
💻 S
字号:
// ====================================================================// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL// project.//// Rights for redistribution and usage in source and binary forms are// granted according to the OpenSSL license. Warranty of any kind is// disclaimed.// ====================================================================.ident  "rc4-ia64.S, Version 2.0".ident  "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"// What's wrong with compiler generated code? Because of the nature of// C language, compiler doesn't [dare to] reorder load and stores. But// being memory-bound, RC4 should benefit from reorder [on in-order-// execution core such as IA-64]. But what can we reorder? At the very// least we can safely reorder references to key schedule in respect// to input and output streams. Secondly, from the first [close] glance// it appeared that it's possible to pull up some references to// elements of the key schedule itself. Original rationale ["prior// loads are not safe only for "degenerated" key schedule, when some// elements equal to the same value"] was kind of sloppy. I should have// formulated as it really was: if we assume that pulling up reference// to key[x+1] is not safe, then it would mean that key schedule would// "degenerate," which is never the case. The problem is that this// holds true in respect to references to key[x], but not to key[y].// Legitimate "collisions" do occur within every 256^2 bytes window.// Fortunately there're enough free instruction slots to keep prior// reference to key[x+1], detect "collision" and compensate for it.// All this without sacrificing a single clock cycle:-) Throughput is// ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated// code and +30% - if compared to HP-UX C. Unrolling loop below should// give >30% on top of that....text.explicit#if defined(_HPUX_SOURCE) && !defined(_LP64)# define ADDP	addp4#else# define ADDP	add#endif#ifndef SZ#define SZ	4	// this is set to sizeof(RC4_INT)#endif// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for// assembler implementation, while SZ==1 code is ~30% slower.#if SZ==1	// RC4_INT is unsigned char# define	LDKEY	ld1# define	STKEY	st1# define	OFF	0#elif SZ==4	// RC4_INT is unsigned int# define	LDKEY	ld4# define	STKEY	st4# define	OFF	2#elif SZ==8	// RC4_INT is unsigned long# define	LDKEY	ld8# define	STKEY	st8# define	OFF	3#endifout=r8;		// [expanded] output pointerinp=r9;		// [expanded] output pointerprsave=r10;key=r28;	// [expanded] pointer to RC4_KEYksch=r29;	// (key->data+255)[&~(sizeof(key->data)-1)]xx=r30;yy=r31;// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);.global	RC4#.proc	RC4#.align	32.skip	16RC4:	.prologue	.fframe 0	.save   ar.pfs,r2	.save	ar.lc,r3	.save	pr,prsave{ .mii;	alloc	r2=ar.pfs,4,12,0,16	mov	prsave=pr	ADDP	key=0,in0		};;{ .mib;	cmp.eq	p6,p0=0,in1			// len==0?	mov	r3=ar.lc(p6)	br.ret.spnt.many	b0	};;	// emergency exit	.body	.rotr	dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];{ .mib;	LDKEY	xx=[key],SZ			// load key->x	add	in1=-1,in1			// adjust len for loop counter	nop.b	0			}{ .mib;	ADDP	inp=0,in2	ADDP	out=0,in3	brp.loop.imp	.Ltop,.Lexit-16	};;{ .mmi;	LDKEY	yy=[key]			// load key->y	add	ksch=SZ,key	mov	ar.lc=in1		}{ .mmi;	mov	key_y[1]=r0			// guarantee inequality						// in first iteration	add	xx=1,xx	mov	pr.rot=1<<16		};;{ .mii;	nop.m	0	dep	key_x[1]=xx,r0,OFF,8	mov	ar.ec=3			};;	// note that epilogue counter						// is off by 1. I compensate						// for this at exit....Ltop:// The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which// theoretically gives asymptotic performance of clock frequency// divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is// for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently// splits the last bundle and you end up with 5*n spin-rate:-(// Originally the loop was scheduled for 3*n and relied on key// schedule to be aligned at 256*sizeof(RC4_INT) boundary. But// *(out++)=dat, which maps to st1, had same effect [inadvertent// bundle split] and holded the loop back. Rescheduling for 4*n// made it possible to eliminate dependence on specific alignment// and allow OpenSSH keep "abusing" our API. Reaching for 3*n would// require unrolling, sticking to variable shift instruction for// collecting output [to avoid starvation for integer shifter] and// copying of key schedule to controlled place in stack [so that// deposit instruction can serve as substitute for whole// key->data+((x&255)<<log2(sizeof(key->data[0])))]...{ .mmi;	(p19)	st1	[out]=dat[3],1			// *(out++)=dat	(p16)	add	xx=1,xx				// x++	(p18)	dep	rnd[1]=rnd[1],r0,OFF,8	}	// ((tx+ty)&255)<<OFF{ .mmi;	(p16)	add	key_x[1]=ksch,key_x[1]		// &key[xx&255]	(p17)	add	key_y[1]=ksch,key_y[1]	};;	// &key[yy&255]	{ .mmi;	(p16)	LDKEY	tx[0]=[key_x[1]]		// tx=key[xx]	(p17)	LDKEY	ty[0]=[key_y[1]]		// ty=key[yy]		(p16)	dep	key_x[0]=xx,r0,OFF,8	}	// (xx&255)<<OFF{ .mmi;	(p18)	add	rnd[1]=ksch,rnd[1]		// &key[(tx+ty)&255]	(p16)	cmp.ne.unc p20,p21=key_x[1],key_y[1] };;{ .mmi;	(p18)	LDKEY	rnd[1]=[rnd[1]]			// rnd=key[(tx+ty)&255]	(p16)	ld1	dat[0]=[inp],1		}	// dat=*(inp++).pred.rel	"mutex",p20,p21{ .mmi;	(p21)	add	yy=yy,tx[1]			// (p16)	(p20)	add	yy=yy,tx[0]			// (p16) y+=tx	(p21)	mov	tx[0]=tx[1]		};;	// (p16){ .mmi;	(p17)	STKEY	[key_y[1]]=tx[1]		// key[yy]=tx	(p17)	STKEY	[key_x[2]]=ty[0]		// key[xx]=ty	(p16)	dep	key_y[0]=yy,r0,OFF,8	}	// &key[yy&255]{ .mmb;	(p17)	add	rnd[0]=tx[1],ty[0]		// tx+=ty	(p18)	xor	dat[2]=dat[2],rnd[1]		// dat^=rnd	br.ctop.sptk	.Ltop			};;.Lexit:{ .mib;	STKEY	[key]=yy,-SZ			// save key->y	mov	pr=prsave,0x1ffff	nop.b	0			}{ .mib;	st1	[out]=dat[3],1			// compensate for truncated						// epilogue counter	add	xx=-1,xx	nop.b	0			};;{ .mib;	STKEY	[key]=xx			// save key->x	mov	ar.lc=r3	br.ret.sptk.many	b0	};;.endp	RC4#

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -