📄 rc4-ia64.s
字号:
// ====================================================================// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL// project.//// Rights for redistribution and usage in source and binary forms are// granted according to the OpenSSL license. Warranty of any kind is// disclaimed.// ====================================================================.ident "rc4-ia64.S, Version 2.0".ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"// What's wrong with compiler generated code? Because of the nature of// C language, compiler doesn't [dare to] reorder load and stores. But// being memory-bound, RC4 should benefit from reorder [on in-order-// execution core such as IA-64]. But what can we reorder? At the very// least we can safely reorder references to key schedule in respect// to input and output streams. Secondly, from the first [close] glance// it appeared that it's possible to pull up some references to// elements of the key schedule itself. Original rationale ["prior// loads are not safe only for "degenerated" key schedule, when some// elements equal to the same value"] was kind of sloppy. I should have// formulated as it really was: if we assume that pulling up reference// to key[x+1] is not safe, then it would mean that key schedule would// "degenerate," which is never the case. The problem is that this// holds true in respect to references to key[x], but not to key[y].// Legitimate "collisions" do occur within every 256^2 bytes window.// Fortunately there're enough free instruction slots to keep prior// reference to key[x+1], detect "collision" and compensate for it.// All this without sacrificing a single clock cycle:-) Throughput is// ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated// code and +30% - if compared to HP-UX C. Unrolling loop below should// give >30% on top of that....text.explicit#if defined(_HPUX_SOURCE) && !defined(_LP64)# define ADDP addp4#else# define ADDP add#endif#ifndef SZ#define SZ 4 // this is set to sizeof(RC4_INT)#endif// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for// assembler implementation, while SZ==1 code is ~30% slower.#if SZ==1 // RC4_INT is unsigned char# define LDKEY ld1# define STKEY st1# define OFF 0#elif SZ==4 // RC4_INT is unsigned int# define LDKEY ld4# define STKEY st4# define OFF 2#elif SZ==8 // RC4_INT is unsigned long# define LDKEY ld8# define STKEY st8# define OFF 3#endifout=r8; // [expanded] output pointerinp=r9; // [expanded] output pointerprsave=r10;key=r28; // [expanded] pointer to RC4_KEYksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)]xx=r30;yy=r31;// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);.global RC4#.proc RC4#.align 32.skip 16RC4: .prologue .fframe 0 .save ar.pfs,r2 .save ar.lc,r3 .save pr,prsave{ .mii; alloc r2=ar.pfs,4,12,0,16 mov prsave=pr ADDP key=0,in0 };;{ .mib; cmp.eq p6,p0=0,in1 // len==0? mov r3=ar.lc(p6) br.ret.spnt.many b0 };; // emergency exit .body .rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];{ .mib; LDKEY xx=[key],SZ // load key->x add in1=-1,in1 // adjust len for loop counter nop.b 0 }{ .mib; ADDP inp=0,in2 ADDP out=0,in3 brp.loop.imp .Ltop,.Lexit-16 };;{ .mmi; LDKEY yy=[key] // load key->y add ksch=SZ,key mov ar.lc=in1 }{ .mmi; mov key_y[1]=r0 // guarantee inequality // in first iteration add xx=1,xx mov pr.rot=1<<16 };;{ .mii; nop.m 0 dep key_x[1]=xx,r0,OFF,8 mov ar.ec=3 };; // note that epilogue counter // is off by 1. I compensate // for this at exit....Ltop:// The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which// theoretically gives asymptotic performance of clock frequency// divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is// for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently// splits the last bundle and you end up with 5*n spin-rate:-(// Originally the loop was scheduled for 3*n and relied on key// schedule to be aligned at 256*sizeof(RC4_INT) boundary. But// *(out++)=dat, which maps to st1, had same effect [inadvertent// bundle split] and holded the loop back. Rescheduling for 4*n// made it possible to eliminate dependence on specific alignment// and allow OpenSSH keep "abusing" our API. Reaching for 3*n would// require unrolling, sticking to variable shift instruction for// collecting output [to avoid starvation for integer shifter] and// copying of key schedule to controlled place in stack [so that// deposit instruction can serve as substitute for whole// key->data+((x&255)<<log2(sizeof(key->data[0])))]...{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat (p16) add xx=1,xx // x++ (p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF{ .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255] (p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255] { .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx] (p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy] (p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF{ .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255] (p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255] (p16) ld1 dat[0]=[inp],1 } // dat=*(inp++).pred.rel "mutex",p20,p21{ .mmi; (p21) add yy=yy,tx[1] // (p16) (p20) add yy=yy,tx[0] // (p16) y+=tx (p21) mov tx[0]=tx[1] };; // (p16){ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx (p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty (p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255]{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty (p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd br.ctop.sptk .Ltop };;.Lexit:{ .mib; STKEY [key]=yy,-SZ // save key->y mov pr=prsave,0x1ffff nop.b 0 }{ .mib; st1 [out]=dat[3],1 // compensate for truncated // epilogue counter add xx=-1,xx nop.b 0 };;{ .mib; STKEY [key]=xx // save key->x mov ar.lc=r3 br.ret.sptk.many b0 };;.endp RC4#
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -