📄 mpskoptdem_bp.cpp
字号:
//
// File = mpskoptdem_bp.cpp
//
#include <stdlib.h>
//#include <fstream>
#include "parmfile.h"
#include "mpskoptdem_bp.h"
#include "misdefs.h"
#include "model_graph.h"
extern ParmFile *ParmInput;
extern int PassNumber;
#ifdef _DEBUG
extern ofstream *DebugFile;
#endif
//======================================================
MpskOptimalBandpassDemod::MpskOptimalBandpassDemod( char* instance_name,
PracSimModel* outer_model,
Signal< float >* in_sig,
Signal< bit_t >* symb_clock_in,
Signal< byte_t >* out_sig )
:PracSimModel(instance_name,
outer_model)
{
MODEL_NAME(MpskOptimalBandpassDemod);
ENABLE_MULTIRATE;
//-----------------------------------------
// Read model config parms
OPEN_PARM_BLOCK;
GET_DOUBLE_PARM(Phase_Unbal);
GET_DOUBLE_PARM(Carrier_Freq);
GET_INT_PARM(Bits_Per_Symb);
GET_INT_PARM(Samps_Per_Symb);
GET_DOUBLE_PARM(Dly_To_Start);
Carrier_Freq_Rad = TWO_PI * Carrier_Freq;
//int block_size = ParmInput.GetIntParm("block_size\0");
//double samp_intvl = ParmInput.GetDoubleParm("samp_intvl\0");
//--------------------------------------
// Connect input and output signals
Out_Sig = out_sig;
Symb_Clock_In = symb_clock_in;
In_Sig = in_sig;
MAKE_OUTPUT( Out_Sig );
MAKE_INPUT( Symb_Clock_In );
MAKE_INPUT( In_Sig );
double resamp_rate = 1.0/double(Samps_Per_Symb);
CHANGE_RATE( In_Sig, Out_Sig, resamp_rate );
CHANGE_RATE( Symb_Clock_In, Out_Sig, resamp_rate );
//------------------
// compute decision boundaries
Num_Diff_Symbs = 1;
for(int i=1; i<=Bits_Per_Symb; i++)
Num_Diff_Symbs *=2;
double offset = TWO_PI/(2.0*Num_Diff_Symbs);
Decis_Bound = new float[Num_Diff_Symbs];
for(int isymb=0; isymb<Num_Diff_Symbs; isymb++)
{
Decis_Bound[isymb] = float(offset + isymb*TWO_PI/double(Num_Diff_Symbs));
}
}
//==============================================
MpskOptimalBandpassDemod::~MpskOptimalBandpassDemod( void ){ };
//==============================================
void MpskOptimalBandpassDemod::Initialize(void)
{
Block_Size = In_Sig->GetBlockSize();
// Out_Samp_Intvl = Out_Sig->GetSampIntvl();
//
// set up table of phase references
Ref_Angle = new float[Num_Diff_Symbs];
Integ_Val = new double[Num_Diff_Symbs];
for( int isymb=0; isymb<Num_Diff_Symbs; isymb++)
{
Integ_Val[isymb] = 0.0;
Ref_Angle[isymb] = TWO_PI * isymb/double(Num_Diff_Symbs);
}
Time = 0.0;
Samp_Intvl = In_Sig->GetSampIntvl();
}
//============================================
int MpskOptimalBandpassDemod::Execute()
{
byte_t *out_sig_ptr;
float *in_sig_ptr;
bit_t *symb_clock_in_ptr;
float in_val;
double *integ_val;
double max_val=0.0;
double omega, time, time_base;
double samp_intvl;
int is;
byte_t isymb, symb_decis;
#ifdef _DEBUG
*DebugFile << "In MpskOptimalDemod::Execute\0" << endl;
#endif
in_sig_ptr = GET_INPUT_PTR( In_Sig );
symb_clock_in_ptr = GET_INPUT_PTR( Symb_Clock_In );
out_sig_ptr = GET_OUTPUT_PTR( Out_Sig );
omega = Carrier_Freq_Rad;
time_base = Time;
samp_intvl = Samp_Intvl;
integ_val = Integ_Val;
for (is=0; is<Block_Size; is++)
{
in_val = *in_sig_ptr++;
time = time_base + is * samp_intvl;
// correlate input signal against all possible reference phases
for( isymb=0; isymb<Num_Diff_Symbs; isymb++)
{
Integ_Val[isymb] += in_val * cos(omega*time + Ref_Angle[isymb]);
}
if(*symb_clock_in_ptr != 0)
{
// time to make a decision
max_val = Integ_Val[0];
symb_decis = 0;
for(isymb=1; isymb<Num_Diff_Symbs; isymb++)
{
if(Integ_Val[isymb] > max_val)
{
max_val = Integ_Val[isymb];
symb_decis = isymb;
}
}
*out_sig_ptr = symb_decis;
out_sig_ptr++;
for(isymb=0; isymb<Num_Diff_Symbs; isymb++)
{
Integ_Val[isymb] = 0.0;
}
}
symb_clock_in_ptr++;
}
Time = time_base + samp_intvl * Block_Size;
//Integ_Val = integ_val;
return(_MES_AOK);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -