📄 au1xmmc.c
字号:
/* * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver * * Copyright (c) 2005, Advanced Micro Devices, Inc. * * Developed with help from the 2.4.30 MMC AU1XXX controller including * the following copyright notices: * Copyright (c) 2003-2004 Embedded Edge, LLC. * Portions Copyright (C) 2002 Embedix, Inc * Copyright 2002 Hewlett-Packard Company * 2.6 version of this driver inspired by: * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman, * All Rights Reserved. * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King, * All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. *//* Why is a timer used to detect insert events? * * From the AU1100 MMC application guide: * If the Au1100-based design is intended to support both MultiMediaCards * and 1- or 4-data bit SecureDigital cards, then the solution is to * connect a weak (560KOhm) pull-up resistor to connector pin 1. * In doing so, a MMC card never enters SPI-mode communications, * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective * (the low to high transition will not occur). * * So we use the timer to check the status manually. */#include <linux/module.h>#include <linux/init.h>#include <linux/platform_device.h>#include <linux/mm.h>#include <linux/interrupt.h>#include <linux/dma-mapping.h>#include <linux/mmc/host.h>#include <linux/mmc/protocol.h>#include <asm/io.h>#include <asm/mach-au1x00/au1000.h>#include <asm/mach-au1x00/au1xxx_dbdma.h>#include <asm/mach-au1x00/au1100_mmc.h>#include <asm/scatterlist.h>#include <au1xxx.h>#include "au1xmmc.h"#define DRIVER_NAME "au1xxx-mmc"/* Set this to enable special debugging macros */#ifdef DEBUG#define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)#else#define DBG(fmt, idx, args...)#endifconst struct { u32 iobase; u32 tx_devid, rx_devid; u16 bcsrpwr; u16 bcsrstatus; u16 wpstatus;} au1xmmc_card_table[] = { { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0, BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },#ifndef CONFIG_MIPS_DB1200 { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1, BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }#endif};#define AU1XMMC_CONTROLLER_COUNT \ (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))/* This array stores pointers for the hosts (used by the IRQ handler) */struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];static int dma = 1;#ifdef MODULEmodule_param(dma, bool, 0);MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");#endifstatic inline void IRQ_ON(struct au1xmmc_host *host, u32 mask){ u32 val = au_readl(HOST_CONFIG(host)); val |= mask; au_writel(val, HOST_CONFIG(host)); au_sync();}static inline void FLUSH_FIFO(struct au1xmmc_host *host){ u32 val = au_readl(HOST_CONFIG2(host)); au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host)); au_sync_delay(1); /* SEND_STOP will turn off clock control - this re-enables it */ val &= ~SD_CONFIG2_DF; au_writel(val, HOST_CONFIG2(host)); au_sync();}static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask){ u32 val = au_readl(HOST_CONFIG(host)); val &= ~mask; au_writel(val, HOST_CONFIG(host)); au_sync();}static inline void SEND_STOP(struct au1xmmc_host *host){ /* We know the value of CONFIG2, so avoid a read we don't need */ u32 mask = SD_CONFIG2_EN; WARN_ON(host->status != HOST_S_DATA); host->status = HOST_S_STOP; au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host)); au_sync(); /* Send the stop commmand */ au_writel(STOP_CMD, HOST_CMD(host));}static void au1xmmc_set_power(struct au1xmmc_host *host, int state){ u32 val = au1xmmc_card_table[host->id].bcsrpwr; bcsr->board &= ~val; if (state) bcsr->board |= val; au_sync_delay(1);}static inline int au1xmmc_card_inserted(struct au1xmmc_host *host){ return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus) ? 1 : 0;}static inline int au1xmmc_card_readonly(struct au1xmmc_host *host){ return (bcsr->status & au1xmmc_card_table[host->id].wpstatus) ? 1 : 0;}static void au1xmmc_finish_request(struct au1xmmc_host *host){ struct mmc_request *mrq = host->mrq; host->mrq = NULL; host->flags &= HOST_F_ACTIVE; host->dma.len = 0; host->dma.dir = 0; host->pio.index = 0; host->pio.offset = 0; host->pio.len = 0; host->status = HOST_S_IDLE; bcsr->disk_leds |= (1 << 8); mmc_request_done(host->mmc, mrq);}static void au1xmmc_tasklet_finish(unsigned long param){ struct au1xmmc_host *host = (struct au1xmmc_host *) param; au1xmmc_finish_request(host);}static int au1xmmc_send_command(struct au1xmmc_host *host, int wait, struct mmc_command *cmd){ u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT); switch (mmc_resp_type(cmd)) { case MMC_RSP_R1: mmccmd |= SD_CMD_RT_1; break; case MMC_RSP_R1B: mmccmd |= SD_CMD_RT_1B; break; case MMC_RSP_R2: mmccmd |= SD_CMD_RT_2; break; case MMC_RSP_R3: mmccmd |= SD_CMD_RT_3; break; } switch(cmd->opcode) { case MMC_READ_SINGLE_BLOCK: case SD_APP_SEND_SCR: mmccmd |= SD_CMD_CT_2; break; case MMC_READ_MULTIPLE_BLOCK: mmccmd |= SD_CMD_CT_4; break; case MMC_WRITE_BLOCK: mmccmd |= SD_CMD_CT_1; break; case MMC_WRITE_MULTIPLE_BLOCK: mmccmd |= SD_CMD_CT_3; break; case MMC_STOP_TRANSMISSION: mmccmd |= SD_CMD_CT_7; break; } au_writel(cmd->arg, HOST_CMDARG(host)); au_sync(); if (wait) IRQ_OFF(host, SD_CONFIG_CR); au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host)); au_sync(); /* Wait for the command to go on the line */ while(1) { if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO)) break; } /* Wait for the command to come back */ if (wait) { u32 status = au_readl(HOST_STATUS(host)); while(!(status & SD_STATUS_CR)) status = au_readl(HOST_STATUS(host)); /* Clear the CR status */ au_writel(SD_STATUS_CR, HOST_STATUS(host)); IRQ_ON(host, SD_CONFIG_CR); } return MMC_ERR_NONE;}static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status){ struct mmc_request *mrq = host->mrq; struct mmc_data *data; u32 crc; WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP); if (host->mrq == NULL) return; data = mrq->cmd->data; if (status == 0) status = au_readl(HOST_STATUS(host)); /* The transaction is really over when the SD_STATUS_DB bit is clear */ while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB)) status = au_readl(HOST_STATUS(host)); data->error = MMC_ERR_NONE; dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); /* Process any errors */ crc = (status & (SD_STATUS_WC | SD_STATUS_RC)); if (host->flags & HOST_F_XMIT) crc |= ((status & 0x07) == 0x02) ? 0 : 1; if (crc) data->error = MMC_ERR_BADCRC; /* Clear the CRC bits */ au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host)); data->bytes_xfered = 0; if (data->error == MMC_ERR_NONE) { if (host->flags & HOST_F_DMA) { u32 chan = DMA_CHANNEL(host); chan_tab_t *c = *((chan_tab_t **) chan); au1x_dma_chan_t *cp = c->chan_ptr; data->bytes_xfered = cp->ddma_bytecnt; } else data->bytes_xfered = (data->blocks * data->blksz) - host->pio.len; } au1xmmc_finish_request(host);}static void au1xmmc_tasklet_data(unsigned long param){ struct au1xmmc_host *host = (struct au1xmmc_host *) param; u32 status = au_readl(HOST_STATUS(host)); au1xmmc_data_complete(host, status);}#define AU1XMMC_MAX_TRANSFER 8static void au1xmmc_send_pio(struct au1xmmc_host *host){ struct mmc_data *data = 0; int sg_len, max, count = 0; unsigned char *sg_ptr; u32 status = 0; struct scatterlist *sg; data = host->mrq->data; if (!(host->flags & HOST_F_XMIT)) return; /* This is the pointer to the data buffer */ sg = &data->sg[host->pio.index]; sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset; /* This is the space left inside the buffer */ sg_len = data->sg[host->pio.index].length - host->pio.offset; /* Check to if we need less then the size of the sg_buffer */ max = (sg_len > host->pio.len) ? host->pio.len : sg_len; if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; for(count = 0; count < max; count++ ) { unsigned char val; status = au_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_TH)) break; val = *sg_ptr++; au_writel((unsigned long) val, HOST_TXPORT(host)); au_sync(); } host->pio.len -= count; host->pio.offset += count; if (count == sg_len) { host->pio.index++; host->pio.offset = 0; } if (host->pio.len == 0) { IRQ_OFF(host, SD_CONFIG_TH); if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); }}static void au1xmmc_receive_pio(struct au1xmmc_host *host){ struct mmc_data *data = 0; int sg_len = 0, max = 0, count = 0; unsigned char *sg_ptr = 0; u32 status = 0; struct scatterlist *sg; data = host->mrq->data; if (!(host->flags & HOST_F_RECV)) return; max = host->pio.len; if (host->pio.index < host->dma.len) { sg = &data->sg[host->pio.index]; sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset; /* This is the space left inside the buffer */ sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset; /* Check to if we need less then the size of the sg_buffer */ if (sg_len < max) max = sg_len; } if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; for(count = 0; count < max; count++ ) { u32 val; status = au_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_NE)) break; if (status & SD_STATUS_RC) { DBG("RX CRC Error [%d + %d].\n", host->id, host->pio.len, count); break; } if (status & SD_STATUS_RO) { DBG("RX Overrun [%d + %d]\n", host->id, host->pio.len, count); break; } else if (status & SD_STATUS_RU) { DBG("RX Underrun [%d + %d]\n", host->id, host->pio.len, count); break; } val = au_readl(HOST_RXPORT(host)); if (sg_ptr) *sg_ptr++ = (unsigned char) (val & 0xFF); } host->pio.len -= count; host->pio.offset += count; if (sg_len && count == sg_len) { host->pio.index++; host->pio.offset = 0; } if (host->pio.len == 0) { //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); IRQ_OFF(host, SD_CONFIG_NE); if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); }}/* static void au1xmmc_cmd_complete This is called when a command has been completed - grab the response and check for errors. Then start the data transfer if it is indicated.*/static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status){ struct mmc_request *mrq = host->mrq; struct mmc_command *cmd; int trans; if (!host->mrq) return; cmd = mrq->cmd; cmd->error = MMC_ERR_NONE; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { u32 r[4]; int i; r[0] = au_readl(host->iobase + SD_RESP3); r[1] = au_readl(host->iobase + SD_RESP2); r[2] = au_readl(host->iobase + SD_RESP1); r[3] = au_readl(host->iobase + SD_RESP0); /* The CRC is omitted from the response, so really * we only got 120 bytes, but the engine expects * 128 bits, so we have to shift things up */ for(i = 0; i < 4; i++) { cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8; if (i != 3) cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24; } } else { /* Techincally, we should be getting all 48 bits of * the response (SD_RESP1 + SD_RESP2), but because * our response omits the CRC, our data ends up * being shifted 8 bits to the right. In this case, * that means that the OSR data starts at bit 31, * so we can just read RESP0 and return that */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -