📄 sa1100_ir.c
字号:
/* * linux/drivers/net/irda/sa1100_ir.c * * Copyright (C) 2000-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Infra-red driver for the StrongARM SA1100 embedded microprocessor * * Note that we don't have to worry about the SA1111's DMA bugs in here, * so we use the straight forward dma_map_* functions with a null pointer. * * This driver takes one kernel command line parameter, sa1100ir=, with * the following options: * max_rate:baudrate - set the maximum baud rate * power_leve:level - set the transmitter power level * tx_lpm:0|1 - set transmit low power mode */#include <linux/module.h>#include <linux/moduleparam.h>#include <linux/types.h>#include <linux/init.h>#include <linux/errno.h>#include <linux/netdevice.h>#include <linux/slab.h>#include <linux/rtnetlink.h>#include <linux/interrupt.h>#include <linux/delay.h>#include <linux/platform_device.h>#include <linux/dma-mapping.h>#include <net/irda/irda.h>#include <net/irda/wrapper.h>#include <net/irda/irda_device.h>#include <asm/irq.h>#include <asm/dma.h>#include <asm/hardware.h>#include <asm/mach/irda.h>static int power_level = 3;static int tx_lpm;static int max_rate = 4000000;struct sa1100_irda { unsigned char hscr0; unsigned char utcr4; unsigned char power; unsigned char open; int speed; int newspeed; struct sk_buff *txskb; struct sk_buff *rxskb; dma_addr_t txbuf_dma; dma_addr_t rxbuf_dma; dma_regs_t *txdma; dma_regs_t *rxdma; struct net_device_stats stats; struct device *dev; struct irda_platform_data *pdata; struct irlap_cb *irlap; struct qos_info qos; iobuff_t tx_buff; iobuff_t rx_buff;};#define IS_FIR(si) ((si)->speed >= 4000000)#define HPSIR_MAX_RXLEN 2047/* * Allocate and map the receive buffer, unless it is already allocated. */static int sa1100_irda_rx_alloc(struct sa1100_irda *si){ if (si->rxskb) return 0; si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC); if (!si->rxskb) { printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n"); return -ENOMEM; } /* * Align any IP headers that may be contained * within the frame. */ skb_reserve(si->rxskb, 1); si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data, HPSIR_MAX_RXLEN, DMA_FROM_DEVICE); return 0;}/* * We want to get here as soon as possible, and get the receiver setup. * We use the existing buffer. */static void sa1100_irda_rx_dma_start(struct sa1100_irda *si){ if (!si->rxskb) { printk(KERN_ERR "sa1100_ir: rx buffer went missing\n"); return; } /* * First empty receive FIFO */ Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; /* * Enable the DMA, receiver and receive interrupt. */ sa1100_clear_dma(si->rxdma); sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN); Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;}/* * Set the IrDA communications speed. */static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed){ unsigned long flags; int brd, ret = -EINVAL; switch (speed) { case 9600: case 19200: case 38400: case 57600: case 115200: brd = 3686400 / (16 * speed) - 1; /* * Stop the receive DMA. */ if (IS_FIR(si)) sa1100_stop_dma(si->rxdma); local_irq_save(flags); Ser2UTCR3 = 0; Ser2HSCR0 = HSCR0_UART; Ser2UTCR1 = brd >> 8; Ser2UTCR2 = brd; /* * Clear status register */ Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; if (si->pdata->set_speed) si->pdata->set_speed(si->dev, speed); si->speed = speed; local_irq_restore(flags); ret = 0; break; case 4000000: local_irq_save(flags); si->hscr0 = 0; Ser2HSSR0 = 0xff; Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; Ser2UTCR3 = 0; si->speed = speed; if (si->pdata->set_speed) si->pdata->set_speed(si->dev, speed); sa1100_irda_rx_alloc(si); sa1100_irda_rx_dma_start(si); local_irq_restore(flags); break; default: break; } return ret;}/* * Control the power state of the IrDA transmitter. * State: * 0 - off * 1 - short range, lowest power * 2 - medium range, medium power * 3 - maximum range, high power * * Currently, only assabet is known to support this. */static int__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state){ int ret = 0; if (si->pdata->set_power) ret = si->pdata->set_power(si->dev, state); return ret;}static inline intsa1100_set_power(struct sa1100_irda *si, unsigned int state){ int ret; ret = __sa1100_irda_set_power(si, state); if (ret == 0) si->power = state; return ret;}static int sa1100_irda_startup(struct sa1100_irda *si){ int ret; /* * Ensure that the ports for this device are setup correctly. */ if (si->pdata->startup) si->pdata->startup(si->dev); /* * Configure PPC for IRDA - we want to drive TXD2 low. * We also want to drive this pin low during sleep. */ PPSR &= ~PPC_TXD2; PSDR &= ~PPC_TXD2; PPDR |= PPC_TXD2; /* * Enable HP-SIR modulation, and ensure that the port is disabled. */ Ser2UTCR3 = 0; Ser2HSCR0 = HSCR0_UART; Ser2UTCR4 = si->utcr4; Ser2UTCR0 = UTCR0_8BitData; Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL; /* * Clear status register */ Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; ret = sa1100_irda_set_speed(si, si->speed = 9600); if (ret) { Ser2UTCR3 = 0; Ser2HSCR0 = 0; if (si->pdata->shutdown) si->pdata->shutdown(si->dev); } return ret;}static void sa1100_irda_shutdown(struct sa1100_irda *si){ /* * Stop all DMA activity. */ sa1100_stop_dma(si->rxdma); sa1100_stop_dma(si->txdma); /* Disable the port. */ Ser2UTCR3 = 0; Ser2HSCR0 = 0; if (si->pdata->shutdown) si->pdata->shutdown(si->dev);}#ifdef CONFIG_PM/* * Suspend the IrDA interface. */static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state){ struct net_device *dev = platform_get_drvdata(pdev); struct sa1100_irda *si; if (!dev) return 0; si = dev->priv; if (si->open) { /* * Stop the transmit queue */ netif_device_detach(dev); disable_irq(dev->irq); sa1100_irda_shutdown(si); __sa1100_irda_set_power(si, 0); } return 0;}/* * Resume the IrDA interface. */static int sa1100_irda_resume(struct platform_device *pdev){ struct net_device *dev = platform_get_drvdata(pdev); struct sa1100_irda *si; if (!dev) return 0; si = dev->priv; if (si->open) { /* * If we missed a speed change, initialise at the new speed * directly. It is debatable whether this is actually * required, but in the interests of continuing from where * we left off it is desireable. The converse argument is * that we should re-negotiate at 9600 baud again. */ if (si->newspeed) { si->speed = si->newspeed; si->newspeed = 0; } sa1100_irda_startup(si); __sa1100_irda_set_power(si, si->power); enable_irq(dev->irq); /* * This automatically wakes up the queue */ netif_device_attach(dev); } return 0;}#else#define sa1100_irda_suspend NULL#define sa1100_irda_resume NULL#endif/* * HP-SIR format interrupt service routines. */static void sa1100_irda_hpsir_irq(struct net_device *dev){ struct sa1100_irda *si = dev->priv; int status; status = Ser2UTSR0; /* * Deal with any receive errors first. The bytes in error may be * the only bytes in the receive FIFO, so we do this first. */ while (status & UTSR0_EIF) { int stat, data; stat = Ser2UTSR1; data = Ser2UTDR; if (stat & (UTSR1_FRE | UTSR1_ROR)) { si->stats.rx_errors++; if (stat & UTSR1_FRE) si->stats.rx_frame_errors++; if (stat & UTSR1_ROR) si->stats.rx_fifo_errors++; } else async_unwrap_char(dev, &si->stats, &si->rx_buff, data); status = Ser2UTSR0; } /* * We must clear certain bits. */ Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB); if (status & UTSR0_RFS) { /* * There are at least 4 bytes in the FIFO. Read 3 bytes * and leave the rest to the block below. */ async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); } if (status & (UTSR0_RFS | UTSR0_RID)) { /* * Fifo contains more than 1 character. */ do { async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); } while (Ser2UTSR1 & UTSR1_RNE); dev->last_rx = jiffies; } if (status & UTSR0_TFS && si->tx_buff.len) { /* * Transmitter FIFO is not full */ do { Ser2UTDR = *si->tx_buff.data++; si->tx_buff.len -= 1; } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len); if (si->tx_buff.len == 0) { si->stats.tx_packets++; si->stats.tx_bytes += si->tx_buff.data - si->tx_buff.head; /* * We need to ensure that the transmitter has * finished. */ do rmb(); while (Ser2UTSR1 & UTSR1_TBY); /* * Ok, we've finished transmitting. Now enable * the receiver. Sometimes we get a receive IRQ * immediately after a transmit... */ Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; if (si->newspeed) { sa1100_irda_set_speed(si, si->newspeed); si->newspeed = 0; } /* I'm hungry! */ netif_wake_queue(dev); } }}static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev){ struct sk_buff *skb = si->rxskb; dma_addr_t dma_addr; unsigned int len, stat, data; if (!skb) { printk(KERN_ERR "sa1100_ir: SKB is NULL!\n"); return; } /* * Get the current data position. */ dma_addr = sa1100_get_dma_pos(si->rxdma); len = dma_addr - si->rxbuf_dma; if (len > HPSIR_MAX_RXLEN) len = HPSIR_MAX_RXLEN; dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE); do { /* * Read Status, and then Data. */ stat = Ser2HSSR1; rmb(); data = Ser2HSDR; if (stat & (HSSR1_CRE | HSSR1_ROR)) { si->stats.rx_errors++; if (stat & HSSR1_CRE) si->stats.rx_crc_errors++; if (stat & HSSR1_ROR) si->stats.rx_frame_errors++; } else skb->data[len++] = data; /* * If we hit the end of frame, there's * no point in continuing. */ if (stat & HSSR1_EOF) break; } while (Ser2HSSR0 & HSSR0_EIF); if (stat & HSSR1_EOF) { si->rxskb = NULL; skb_put(skb, len); skb->dev = dev; skb->mac.raw = skb->data; skb->protocol = htons(ETH_P_IRDA); si->stats.rx_packets++; si->stats.rx_bytes += len; /* * Before we pass the buffer up, allocate a new one. */ sa1100_irda_rx_alloc(si); netif_rx(skb); dev->last_rx = jiffies; } else { /* * Remap the buffer. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -