⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 long_term.c

📁 asterisk 是一个很有知名度开源软件
💻 C
📖 第 1 页 / 共 2 页
字号:
static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),	register word	* d,		/* [0..39]	IN	*/	register word	* dp,		/* [-120..-1]	IN	*/	word		* bc_out,	/* 		OUT	*/	word		* Nc_out	/* 		OUT	*/){	register int  	k, lambda;	word		Nc, bc;	float		wt_float[40];	float		dp_float_base[120], * dp_float = dp_float_base + 120;	longword	L_max, L_power;	word		R, S, dmax, scal;	register word	temp;	/*  Search of the optimum scaling of d[0..39].	 */	dmax = 0;	for (k = 0; k <= 39; k++) {		temp = d[k];		temp = GSM_ABS( temp );		if (temp > dmax) dmax = temp;	}	temp = 0;	if (dmax == 0) scal = 0;	else {		assert(dmax > 0);		temp = gsm_norm( (longword)dmax << 16 );	}	if (temp > 6) scal = 0;	else scal = 6 - temp;	assert(scal >= 0);	/*  Initialization of a working array wt	 */	for (k =    0; k < 40; k++) wt_float[k] =  SASR( d[k], scal );	for (k = -120; k <  0; k++) dp_float[k] =  dp[k];	/* Search for the maximum cross-correlation and coding of the LTP lag	 */	L_max = 0;	Nc    = 40;	/* index for the maximum cross-correlation */	for (lambda = 40; lambda <= 120; lambda += 9) {		/*  Calculate L_result for l = lambda .. lambda + 9.		 */		register float *lp = dp_float - lambda;		register float	W;		register float	a = lp[-8], b = lp[-7], c = lp[-6],				d = lp[-5], e = lp[-4], f = lp[-3],				g = lp[-2], h = lp[-1];		register float  E; 		register float  S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,				S5 = 0, S6 = 0, S7 = 0, S8 = 0;#		undef STEP#		define	STEP(K, a, b, c, d, e, f, g, h) \			W = wt_float[K];		\			E = W * a; S8 += E;		\			E = W * b; S7 += E;		\			E = W * c; S6 += E;		\			E = W * d; S5 += E;		\			E = W * e; S4 += E;		\			E = W * f; S3 += E;		\			E = W * g; S2 += E;		\			E = W * h; S1 += E;		\			a  = lp[K];			\			E = W * a; S0 += E#		define	STEP_A(K)	STEP(K, a, b, c, d, e, f, g, h)#		define	STEP_B(K)	STEP(K, b, c, d, e, f, g, h, a)#		define	STEP_C(K)	STEP(K, c, d, e, f, g, h, a, b)#		define	STEP_D(K)	STEP(K, d, e, f, g, h, a, b, c)#		define	STEP_E(K)	STEP(K, e, f, g, h, a, b, c, d)#		define	STEP_F(K)	STEP(K, f, g, h, a, b, c, d, e)#		define	STEP_G(K)	STEP(K, g, h, a, b, c, d, e, f)#		define	STEP_H(K)	STEP(K, h, a, b, c, d, e, f, g)		STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);		STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);		STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);		STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);		STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);		STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);		STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);		STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);		STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);		STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);		if (S0 > L_max) { L_max = S0; Nc = lambda;     }		if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }		if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }		if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }		if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }		if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }		if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }		if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }		if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }	}	*Nc_out = Nc;	L_max <<= 1;	/*  Rescaling of L_max	 */	assert(scal <= 100 && scal >=  -100);	L_max = L_max >> (6 - scal);	/* sub(6, scal) */	assert( Nc <= 120 && Nc >= 40);	/*   Compute the power of the reconstructed short term residual	 *   signal dp[..]	 */	L_power = 0;	for (k = 0; k <= 39; k++) {		register longword L_temp;		L_temp   = SASR( dp[k - Nc], 3 );		L_power += L_temp * L_temp;	}	L_power <<= 1;	/* from L_MULT */	/*  Normalization of L_max and L_power	 */	if (L_max <= 0)  {		*bc_out = 0;		return;	}	if (L_max >= L_power) {		*bc_out = 3;		return;	}	temp = gsm_norm( L_power );	R = SASR( L_max   << temp, 16 );	S = SASR( L_power << temp, 16 );	/*  Coding of the LTP gain	 */	/*  Table 4.3a must be used to obtain the level DLB[i] for the	 *  quantization of the LTP gain b to get the coded version bc.	 */	for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;	*bc_out = bc;}#ifdef	FAST#ifdef	LTP_CUTstatic void Cut_Fast_Calculation_of_the_LTP_parameters P5((st,							d,dp,bc_out,Nc_out),	struct gsm_state * st,		/*              IN	*/	register word	* d,		/* [0..39]	IN	*/	register word	* dp,		/* [-120..-1]	IN	*/	word		* bc_out,	/* 		OUT	*/	word		* Nc_out	/* 		OUT	*/){	register int  	k, lambda;	register float	wt_float;	word		Nc, bc;	word		wt_max, best_k, ltp_cut;	float		dp_float_base[120], * dp_float = dp_float_base + 120;	register float	L_result, L_max, L_power;	wt_max = 0;	for (k = 0; k < 40; ++k) {		if      ( d[k] > wt_max) wt_max =  d[best_k = k];		else if (-d[k] > wt_max) wt_max = -d[best_k = k];	}	assert(wt_max >= 0);	wt_float = (float)wt_max;	for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];	/* Search for the maximum cross-correlation and coding of the LTP lag	 */	L_max = 0;	Nc    = 40;	/* index for the maximum cross-correlation */	for (lambda = 40; lambda <= 120; lambda++) {		L_result = wt_float * dp_float[best_k - lambda];		if (L_result > L_max) {			Nc    = lambda;			L_max = L_result;		}	}	*Nc_out = Nc;	if (L_max <= 0.)  {		*bc_out = 0;		return;	}	/*  Compute the power of the reconstructed short term residual	 *  signal dp[..]	 */	dp_float -= Nc;	L_power = 0;	for (k = 0; k < 40; ++k) {		register float f = dp_float[k];		L_power += f * f;	}	if (L_max >= L_power) {		*bc_out = 3;		return;	}	/*  Coding of the LTP gain	 *  Table 4.3a must be used to obtain the level DLB[i] for the	 *  quantization of the LTP gain b to get the coded version bc.	 */	lambda = L_max / L_power * 32768.;	for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;	*bc_out = bc;}#endif /* LTP_CUT */static void Fast_Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),	register word	* d,		/* [0..39]	IN	*/	register word	* dp,		/* [-120..-1]	IN	*/	word		* bc_out,	/* 		OUT	*/	word		* Nc_out	/* 		OUT	*/){	register int  	k, lambda;	word		Nc, bc;	float		wt_float[40];	float		dp_float_base[120], * dp_float = dp_float_base + 120;	register float	L_max, L_power;	for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];	for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];	/* Search for the maximum cross-correlation and coding of the LTP lag	 */	L_max = 0;	Nc    = 40;	/* index for the maximum cross-correlation */	for (lambda = 40; lambda <= 120; lambda += 9) {		/*  Calculate L_result for l = lambda .. lambda + 9.		 */		register float *lp = dp_float - lambda;		register float	W;		register float	a = lp[-8], b = lp[-7], c = lp[-6],				d = lp[-5], e = lp[-4], f = lp[-3],				g = lp[-2], h = lp[-1];		register float  E; 		register float  S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,				S5 = 0, S6 = 0, S7 = 0, S8 = 0;#		undef STEP#		define	STEP(K, a, b, c, d, e, f, g, h) \			W = wt_float[K];		\			E = W * a; S8 += E;		\			E = W * b; S7 += E;		\			E = W * c; S6 += E;		\			E = W * d; S5 += E;		\			E = W * e; S4 += E;		\			E = W * f; S3 += E;		\			E = W * g; S2 += E;		\			E = W * h; S1 += E;		\			a  = lp[K];			\			E = W * a; S0 += E#		define	STEP_A(K)	STEP(K, a, b, c, d, e, f, g, h)#		define	STEP_B(K)	STEP(K, b, c, d, e, f, g, h, a)#		define	STEP_C(K)	STEP(K, c, d, e, f, g, h, a, b)#		define	STEP_D(K)	STEP(K, d, e, f, g, h, a, b, c)#		define	STEP_E(K)	STEP(K, e, f, g, h, a, b, c, d)#		define	STEP_F(K)	STEP(K, f, g, h, a, b, c, d, e)#		define	STEP_G(K)	STEP(K, g, h, a, b, c, d, e, f)#		define	STEP_H(K)	STEP(K, h, a, b, c, d, e, f, g)		STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);		STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);		STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);		STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);		STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);		STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);		STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);		STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);		STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);		STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);		if (S0 > L_max) { L_max = S0; Nc = lambda;     }		if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }		if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }		if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }		if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }		if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }		if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }		if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }		if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }	}	*Nc_out = Nc;	if (L_max <= 0.)  {		*bc_out = 0;		return;	}	/*  Compute the power of the reconstructed short term residual	 *  signal dp[..]	 */	dp_float -= Nc;	L_power = 0;	for (k = 0; k < 40; ++k) {		register float f = dp_float[k];		L_power += f * f;	}	if (L_max >= L_power) {		*bc_out = 3;		return;	}	/*  Coding of the LTP gain	 *  Table 4.3a must be used to obtain the level DLB[i] for the	 *  quantization of the LTP gain b to get the coded version bc.	 */	lambda = L_max / L_power * 32768.;	for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;	*bc_out = bc;}#endif	/* FAST 	 */#endif	/* USE_FLOAT_MUL *//* 4.2.12 */static void Long_term_analysis_filtering P6((bc,Nc,dp,d,dpp,e),	word		bc,	/* 					IN  */	word		Nc,	/* 					IN  */	register word	* dp,	/* previous d	[-120..-1]		IN  */	register word	* d,	/* d		[0..39]			IN  */	register word	* dpp,	/* estimate	[0..39]			OUT */	register word	* e	/* long term res. signal [0..39]	OUT */)/* *  In this part, we have to decode the bc parameter to compute *  the samples of the estimate dpp[0..39].  The decoding of bc needs the *  use of table 4.3b.  The long term residual signal e[0..39] *  is then calculated to be fed to the RPE encoding section. */{	register int      k;#	undef STEP#	define STEP(BP)					\	for (k = 0; k <= 39; k++) {			\		dpp[k]  = (word)GSM_MULT_R( BP, dp[k - Nc]);	\		e[k]	= GSM_SUB( d[k], dpp[k] );	\	}	switch (bc) {	case 0:	STEP(  3277 ); break;	case 1:	STEP( 11469 ); break;	case 2: STEP( 21299 ); break;	case 3: STEP( 32767 ); break; 	}}void Gsm_Long_Term_Predictor P7((S,d,dp,e,dpp,Nc,bc), 	/* 4x for 160 samples */	struct gsm_state	* S,	word	* d,	/* [0..39]   residual signal	IN	*/	word	* dp,	/* [-120..-1] d'		IN	*/	word	* e,	/* [0..39] 			OUT	*/	word	* dpp,	/* [0..39] 			OUT	*/	word	* Nc,	/* correlation lag		OUT	*/	word	* bc	/* gain factor			OUT	*/){	assert( d  ); assert( dp ); assert( e  );	assert( dpp); assert( Nc ); assert( bc );#if defined(FAST) && defined(USE_FLOAT_MUL)	if (S->fast) #if   defined (LTP_CUT)		if (S->ltp_cut)			Cut_Fast_Calculation_of_the_LTP_parameters(S,				d, dp, bc, Nc);		else#endif /* LTP_CUT */			Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );	else #endif /* FAST & USE_FLOAT_MUL */#ifdef LTP_CUT		if (S->ltp_cut)			Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);		else#endif			Calculation_of_the_LTP_parameters(d, dp, bc, Nc);	Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );}/* 4.3.2 */void Gsm_Long_Term_Synthesis_Filtering P5((S,Ncr,bcr,erp,drp),	struct gsm_state	* S,	word			Ncr,	word			bcr,	register word		* erp,	   /* [0..39]		  	 IN */	register word		* drp	   /* [-120..-1] IN, [-120..40] OUT */)/* *  This procedure uses the bcr and Ncr parameter to realize the *  long term synthesis filtering.  The decoding of bcr needs *  table 4.3b. */{	register int 		k;	word			brp, drpp, Nr;	/*  Check the limits of Nr.	 */	Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;	S->nrp = Nr;	assert(Nr >= 40 && Nr <= 120);	/*  Decoding of the LTP gain bcr	 */	brp = gsm_QLB[ bcr ];	/*  Computation of the reconstructed short term residual 	 *  signal drp[0..39]	 */	assert(brp != MIN_WORD);	for (k = 0; k <= 39; k++) {		drpp   = (word)GSM_MULT_R( brp, drp[ k - Nr ] );		drp[k] = GSM_ADD( erp[k], drpp );	}	/*	 *  Update of the reconstructed short term residual signal	 *  drp[ -1..-120 ]	 */	for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -