⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 short_term.c

📁 asterisk 是一个很有知名度开源软件
💻 C
字号:
/* * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. *//* $Header$ */#include <stdio.h>#include <assert.h>#include "private.h"#include "gsm.h"#include "proto.h"#ifdef K6OPT#include "k6opt.h"#define Short_term_analysis_filtering Short_term_analysis_filteringx#endif/* *  SHORT TERM ANALYSIS FILTERING SECTION *//* 4.2.8 */static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/	word	* LARpp)	/* out: decoded ..			*/{	register word	temp1 /* , temp2 */;	/*  This procedure requires for efficient implementation	 *  two tables. 	 *	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])	 *  MIC[1..8]  = minimum value of the LARc[1..8]	 */	/*  Compute the LARpp[1..8]	 */	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {	 *	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;	 *		temp2  = *B << 1;	 *		temp1  = GSM_SUB( temp1, temp2 );	 *	 *		assert(*INVA != MIN_WORD);	 *	 *		temp1  = GSM_MULT_R( *INVA, temp1 );	 *		*LARpp = GSM_ADD( temp1, temp1 );	 *	}	 */#undef	STEP#define	STEP( B, MIC, INVA )	\		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\		temp1    = GSM_SUB( temp1, B << 1 );		\		temp1    = (word)GSM_MULT_R( INVA, temp1 );		\		*LARpp++ = GSM_ADD( temp1, temp1 );	STEP(      0,  -32,  13107 );	STEP(      0,  -32,  13107 );	STEP(   2048,  -16,  13107 );	STEP(  -2560,  -16,  13107 );	STEP(     94,   -8,  19223 );	STEP(  -1792,   -8,  17476 );	STEP(   -341,   -4,  31454 );	STEP(  -1144,   -4,  29708 );	/* NOTE: the addition of *MIC is used to restore	 * 	 the sign of *LARc.	 */}/* 4.2.9 *//* Computation of the quantized reflection coefficients  *//* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8] *//* *  Within each frame of 160 analyzed speech samples the short term *  analysis and synthesis filters operate with four different sets of *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) *  and the actual set of decoded LARs (LARpp(j)) * * (Initial value: LARpp(j-1)[1..8] = 0.) */static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),	register word * LARpp_j_1,	register word * LARpp_j,	register word * LARp){	register int 	i;	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));	}}static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),	register word * LARpp_j_1,	register word * LARpp_j,	register word * LARp){	register int i;	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));	}}static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),	register word * LARpp_j_1,	register word * LARpp_j,	register word * LARp){	register int i;	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));	}}static void Coefficients_40_159 P2((LARpp_j, LARp),	register word * LARpp_j,	register word * LARp){	register int i;	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)		*LARp = *LARpp_j;}/* 4.2.9.2 */static void LARp_to_rp P1((LARp),	register word * LARp)	/* [0..7] IN/OUT  *//* *  The input of this procedure is the interpolated LARp[0..7] array. *  The reflection coefficients, rp[i], are used in the analysis *  filter and in the synthesis filter. */{	register int 		i;	register word		temp;	for (i = 1; i <= 8; i++, LARp++) {		/* temp = GSM_ABS( *LARp );	         *		 * if (temp < 11059) temp <<= 1;		 * else if (temp < 20070) temp += 11059;		 * else temp = GSM_ADD( temp >> 2, 26112 );		 *		 * *LARp = *LARp < 0 ? -temp : temp;		 */		if (*LARp < 0) {			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);			*LARp = - ((temp < 11059) ? temp << 1				: ((temp < 20070) ? temp + 11059				:  GSM_ADD( temp >> 2, 26112 )));		} else {			temp  = *LARp;			*LARp =    (temp < 11059) ? temp << 1				: ((temp < 20070) ? temp + 11059				:  GSM_ADD( temp >> 2, 26112 ));		}	}}/* 4.2.10 */#ifndef Short_term_analysis_filtering/* SJB Remark: * I tried 2 MMX versions of this function, neither is significantly * faster than the C version which follows.  MMX might be useful if * one were processing 2 input streams in parallel. */static void Short_term_analysis_filtering P4((u0,rp0,k_n,s),	register word * u0,	register word	* rp0,	/* [0..7]	IN	*/	register int 	k_n, 	/*   k_end - k_start	*/	register word	* s	/* [0..n-1]	IN/OUT	*/)/* *  This procedure computes the short term residual signal d[..] to be fed *  to the RPE-LTP loop from the s[..] signal and from the local rp[..] *  array (quantized reflection coefficients).  As the call of this *  procedure can be done in many ways (see the interpolation of the LAR *  coefficient), it is assumed that the computation begins with index *  k_start (for arrays d[..] and s[..]) and stops with index k_end *  (k_start and k_end are defined in 4.2.9.1).  This procedure also *  needs to keep the array u0[0..7] in memory for each call. */{	register word		* u_top = u0 + 8;	register word		* s_top = s + k_n;	while (s < s_top) {		register word		*u, *rp ;		register longword		di, u_out;		di = u_out = *s;		for (rp=rp0, u=u0; u<u_top;) {			register longword	ui, rpi;			ui    = *u;			*u++  = (word)u_out;			rpi   = *rp++;			u_out = ui + (((rpi*di)+0x4000)>>15);			di    = di + (((rpi*ui)+0x4000)>>15);			/* make the common case fastest: */			if ((u_out == (word)u_out) && (di == (word)di)) continue;			/* otherwise do slower fixup (saturation) */			if (u_out>MAX_WORD) u_out=MAX_WORD;			else if (u_out<MIN_WORD) u_out=MIN_WORD;			if (di>MAX_WORD) di=MAX_WORD;			else if (di<MIN_WORD) di=MIN_WORD;		}		*s++ = (word)di;	}}#endif#if defined(USE_FLOAT_MUL) && defined(FAST)static void Fast_Short_term_analysis_filtering P4((u,rp,k_n,s),	register word * u;	register word	* rp,	/* [0..7]	IN	*/	register int 	k_n, 	/*   k_end - k_start	*/	register word	* s	/* [0..n-1]	IN/OUT	*/){	register int		i;	float 	  uf[8],		 rpf[8];	register float scalef = 3.0517578125e-5;	register float		sav, di, temp;	for (i = 0; i < 8; ++i) {		uf[i]  = u[i];		rpf[i] = rp[i] * scalef;	}	for (; k_n--; s++) {		sav = di = *s;		for (i = 0; i < 8; ++i) {			register float rpfi = rpf[i];			register float ufi  = uf[i];			uf[i] = sav;			temp  = rpfi * di + ufi;			di   += rpfi * ufi;			sav   = temp;		}		*s = di;	}	for (i = 0; i < 8; ++i) u[i] = uf[i];}#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) *//* * SJB Remark: modified Short_term_synthesis_filtering() below *  for significant (abt 35%) speedup of decompression. *    (gcc-2.95, k6 cpu) *  Please don't change this without benchmarking decompression *  to see that you haven't harmed speed. *  This function burns most of CPU time for untoasting. *  Unfortunately, didn't see any good way to benefit from mmx. */static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),	struct gsm_state * S,	register word	* rrp,	/* [0..7]	IN	*/	register int	k,	/* k_end - k_start	*/	register word	* wt,	/* [0..k-1]	IN	*/	register word	* sr	/* [0..k-1]	OUT	*/){	register word		* v = S->v;	register int		i;	register longword		sri;	while (k--) {		sri = *wt++;		for (i = 8; i--;) {			register longword		tmp1, tmp2;			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );			 */			tmp1 = rrp[i];			tmp2 = v[i];			tmp2 = (( tmp1 * tmp2 + 16384) >> 15) ;			/* saturation done below */			sri  -= tmp2;			if (sri != (word)sri) {				sri = (sri<0)? MIN_WORD:MAX_WORD;			}			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );			 */			tmp1 = (( tmp1 * sri + 16384) >> 15) ;			/* saturation done below */			tmp1 += v[i];			if (tmp1 != (word)tmp1) {				tmp1 = (tmp1<0)? MIN_WORD:MAX_WORD;			}			v[i+1] = (word)tmp1;		}		*sr++ = v[0] = (word)sri;	}}#if defined(FAST) && defined(USE_FLOAT_MUL)static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),	struct gsm_state * S,	register word	* rrp,	/* [0..7]	IN	*/	register int	k,	/* k_end - k_start	*/	register word	* wt,	/* [0..k-1]	IN	*/	register word	* sr	/* [0..k-1]	OUT	*/){	register word		* v = S->v;	register int		i;	float va[9], rrpa[8];	register float scalef = 3.0517578125e-5, temp;	for (i = 0; i < 8; ++i) {		va[i]   = v[i];		rrpa[i] = (float)rrp[i] * scalef;	}	while (k--) {		register float sri = *wt++;		for (i = 8; i--;) {			sri -= rrpa[i] * va[i];			if     (sri < -32768.) sri = -32768.;			else if (sri > 32767.) sri =  32767.;			temp = va[i] + rrpa[i] * sri;			if     (temp < -32768.) temp = -32768.;			else if (temp > 32767.) temp =  32767.;			va[i+1] = temp;		}		*sr++ = va[0] = sri;	}	for (i = 0; i < 9; ++i) v[i] = va[i];}#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),	struct gsm_state * S,	word	* LARc,		/* coded log area ratio [0..7]  IN	*/	word	* s		/* signal [0..159]		IN/OUT	*/){	word		* LARpp_j	= S->LARpp[ S->j      ];	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];	word		LARp[8];#undef	FILTER#if 	defined(FAST) && defined(USE_FLOAT_MUL)# 	define	FILTER 	(* (S->fast			\			   ? Fast_Short_term_analysis_filtering	\		    	   : Short_term_analysis_filtering	))#else# 	define	FILTER	Short_term_analysis_filtering#endif	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );	LARp_to_rp( LARp );	FILTER( S->u, LARp, 13, s);	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S->u, LARp, 14, s + 13);	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S->u, LARp, 13, s + 27);	Coefficients_40_159( LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S->u, LARp, 120, s + 40);	}void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),	struct gsm_state * S,	word	* LARcr,	/* received log area ratios [0..7] IN  */	word	* wt,		/* received d [0..159]		   IN  */	word	* s		/* signal   s [0..159]		  OUT  */){	word		* LARpp_j	= S->LARpp[ S->j     ];	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];	word		LARp[8];#undef	FILTER#if 	defined(FAST) && defined(USE_FLOAT_MUL)# 	define	FILTER 	(* (S->fast			\			   ? Fast_Short_term_synthesis_filtering	\		    	   : Short_term_synthesis_filtering	))#else#	define	FILTER	Short_term_synthesis_filtering#endif	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );	LARp_to_rp( LARp );	FILTER( S, LARp, 13, wt, s );	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 14, wt + 13, s + 13 );	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 13, wt + 27, s + 27 );	Coefficients_40_159( LARpp_j, LARp );	LARp_to_rp( LARp );	FILTER(S, LARp, 120, wt + 40, s + 40);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -