⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 npp.c

📁 MELPe 1200 bps, fixed point
💻 C
📖 第 1 页 / 共 4 页
字号:
		L_sum = L_mpy_ls(L_tmp4, tmp1);                                /* Q26 */
		L_sum = L_mpy_ls(L_sum, tmp);                                  /* Q24 */
		L_sum = L_add(L_shr(L_tmp3, 6), L_shr(L_sum, 1));              /* Q23 */
		if (L_sum < 1)
			L_sum = 1;
		shift1 = norm_l(L_sum);
		biased_spect[i] = extract_h(L_shl(L_sum, shift1));
		bias_shift[i] = add(sm_shift[i], sub(8, shift1));

		tmp = add(MINV_SUB, shr(tmp5, 2));                             /* Q13 */
		tmp = add(MINV_SUB2, shr(mult(tmp5, tmp), 1));                 /* Q12 */
		L_sum = L_mpy_ls(L_tmp4, tmp2);                                /* Q29 */
		L_sum = L_mpy_ls(L_sum, tmp);                                  /* Q26 */
		L_sum = L_add(L_shr(L_tmp3, 4), L_shr(L_sum, 1));              /* Q25 */
		if (L_sum < 1)
			L_sum = 1;
		shift1 = norm_l(L_sum);
		biased_spect_sub[i] = extract_h(L_shl(L_sum, shift1));
		bias_sub_shift[i] = add(sm_shift[i], sub(6, shift1));
	}
}


/***************************************************************************/
/*	Subroutine noise_slope: compute maximum of the permitted increase of   */
/*		   the noise estimate as a function of the mean signal variance    */
/***************************************************************************/
static Shortword	noise_slope()
{
	Shortword	noise_slope_max;


	if (var_rel_av > X018_Q15)
		noise_slope_max = X132_Q11;
	else if ((var_rel_av < X003_Q15) || (enh_i < 50))
		noise_slope_max = X88_Q11;
	else if (var_rel_av < X005_Q15)
		noise_slope_max = X44_Q11;
	else if (var_rel_av < X006_Q15)
		noise_slope_max = X22_Q11;
	else
		noise_slope_max  = X132_Q11;

	return(noise_slope_max);
}


/***************************************************************************/
/* Subroutine comp_data_shift: compare two block floating-point numbers.   */
/* It actually compares x1 = (num1 * 2^shift1) and x2 = (num2 * 2^shift2). */
/* The sign of the returned value is the same as that of (x1 - x2).        */
/***************************************************************************/
static Shortword	comp_data_shift(Shortword num1, Shortword shift1,
									Shortword num2, Shortword shift2)
{
	Shortword	shift;


	if ((num1 > 0) && (num2 < 0))
		return(1);
	else if ((num1 < 0) && (num2 > 0))
		return(-1);
	else {
		shift = sub(shift1, shift2);
		if (shift > 0)
			num2 = shr(num2, shift);
		else
			num1 = shl(num1, shift);

		return(sub(num1, num2));
	}
}


/***************************************************************************/
/*	Subroutine min_search: find minimum of psd's in circular buffer 	   */
/***************************************************************************/
static void		min_search(Shortword biased_spect[], Shortword bias_shift[],
						   Shortword biased_spect_sub[],
						   Shortword bias_sub_shift[])
{
	register Shortword	i, k;
	static BOOLEAN	localflag[ENH_VEC_LENF];       /* local minimum indicator */
	static Shortword	minspec_counter = 0;             /* count sub-windows */
	static Shortword	circb_index = 0;               /* ring buffer counter */
	static Shortword	circb_min[ENH_VEC_LENF];
                                                /* minimum of circular buffer */
    static Shortword	circb_min_shift[ENH_VEC_LENF];
	Shortword	noise_slope_max, tmp, tmp_shift, temp1, temp2;
	Longword	L_sum;


	/* localflag[] is initialized to FALSE since it is static. */

	if (minspec_counter == 0){
		noise_slope_max = noise_slope();

		for (i = 0; i < ENH_VEC_LENF; i++){
			if (comp_data_shift(biased_spect[i], bias_shift[i],
								act_min[i], act_min_shift[i]) < 0){
				act_min[i] = biased_spect[i];       /* update minimum */
				act_min_shift[i] = bias_shift[i];
				act_min_sub[i] = biased_spect_sub[i];
				act_min_sub_shift[i] = bias_sub_shift[i];
				localflag[i] = FALSE;
			}
		}

		/* write new minimum into ring buffer */
		v_equ(circb[circb_index], act_min, ENH_VEC_LENF);
		v_equ(circb_shift[circb_index], act_min_shift, ENH_VEC_LENF);

		for (i = 0; i < ENH_VEC_LENF; i++){
			/* Find minimum of ring buffer.  Using temp1 and temp2 as cache   */
			/* for circb_min[i] and circb_min_shift[i].                       */

			temp1 = circb[0][i];
			temp2 = circb_shift[0][i];
			for (k = 1; k < NUM_MINWIN; k++){
				if (comp_data_shift(circb[k][i], circb_shift[k][i], temp1,
									temp2) < 0){
					temp1 = circb[k][i];
					temp2 = circb_shift[k][i];
				}
			}
			circb_min[i] = temp1;
			circb_min_shift[i] = temp2;
		}
		for (i = 0; i < ENH_VEC_LENF; i++){
			/*	rapid update in case of local minima which do not deviate
				more than noise_slope_max from the current minima */
			tmp = mult(noise_slope_max, circb_min[i]);
			tmp_shift = add(circb_min_shift[i], 4);         /* adjust for Q11 */
			if (localflag[i] &&
				comp_data_shift(act_min_sub[i], act_min_sub_shift[i],
								circb_min[i], circb_min_shift[i]) > 0 &&
				comp_data_shift(act_min_sub[i], act_min_sub_shift[i], tmp,
								tmp_shift) < 0){
				circb_min[i] = act_min_sub[i];
				circb_min_shift[i] = act_min_sub_shift[i];

				/* propagate new rapid update minimum into ring buffer */
				for (k = 0; k < NUM_MINWIN; k++){
					circb[k][i] = circb_min[i];
					circb_shift[k][i] = circb_min_shift[i];
				}
			}
		}

		/* reset local minimum indicator */
		fill(localflag, FALSE, ENH_VEC_LENF);

		/* increment ring buffer pointer */
		circb_index = add(circb_index, 1);
		if (circb_index == NUM_MINWIN)
			circb_index = 0;
	} else if (minspec_counter == 1){

		v_equ(act_min, biased_spect, ENH_VEC_LENF);
		v_equ(act_min_shift, bias_shift, ENH_VEC_LENF);
		v_equ(act_min_sub, biased_spect_sub, ENH_VEC_LENF);
		v_equ(act_min_sub_shift, bias_sub_shift, ENH_VEC_LENF);

	} else {                                           /* minspec_counter > 1 */

		/* At this point localflag[] is all FALSE.  As we loop through        */
		/* minspec_counter, if any localflag[] is turned TRUE, it will be     */
		/* preserved until we go through the (minspec_counter == 0) branch.   */

		for (i = 0; i < ENH_VEC_LENF; i++){
			if (comp_data_shift(biased_spect[i], bias_shift[i],
								act_min[i], act_min_shift[i]) < 0){
				/* update minimum */
				act_min[i] = biased_spect[i];
				act_min_shift[i] = bias_shift[i];
				act_min_sub[i] = biased_spect_sub[i];
				act_min_sub_shift[i] = bias_sub_shift[i];
				localflag[i] = TRUE;
			}
		}
		for (i = 0; i < ENH_VEC_LENF; i++){
			if (comp_data_shift(act_min_sub[i], act_min_sub_shift[i],
								circb_min[i], circb_min_shift[i]) < 0){
				circb_min[i] = act_min_sub[i];
				circb_min_shift[i] = act_min_sub_shift[i];
			}
		}

		v_equ(noisespect, circb_min, ENH_VEC_LENF);
		v_equ(noise_shift, circb_min_shift, ENH_VEC_LENF);

		for (i = 0; i < ENH_VEC_LENF; i++){
			L_sum = L_mult(ENH_NOISE_BIAS, noisespect[i]);
			if (L_sum < 0x40000000L){
				L_sum = L_shl(L_sum, 1);
				lambdaD_shift[i] = noise_shift[i];
			} else
				lambdaD_shift[i] = add(noise_shift[i], 1);
			lambdaD[i] = extract_h(L_sum);
		}
	}
	minspec_counter = add(minspec_counter, 1);
	if (minspec_counter == LEN_MINWIN)
		minspec_counter = 0;
}


/***************************************************************************/
/*	Subroutine enh_init: initialization of variables for the enhancement   */
/***************************************************************************/
void enh_init()
{
	register Shortword	i;
	Shortword	max, shift, temp, norm_shift, guard;
	Shortword	a_shift;
	Longword	L_sum = 0, L_data;


	/* initialize noise spectrum */
	
	/* Because initial_noise[] is read once and then never used, we can use   */
	/* it for tempV2[] too.                                                   */

	window(initial_noise, sqrt_tukey_256_180, initial_noise, ENH_WINLEN);

	/* ---- Find normalization factor of the input signal ---- */
	/* Starting max with 1 to avoid norm_s(0). */
	max = 1;
	for (i = 0; i < ENH_WINLEN; i++){
		temp = abs_s(initial_noise[i]);
		if (temp > max)
			max = temp;
	}
	shift = norm_s(max);

	/* Now remember the amount of shift, normalize initial_noise[], then      */
	/* process initial_noise[] as Q15. */
	a_shift = sub(15, shift);

	/* transfer to frequency domain */
	v_zap(ybuf, 2*ENH_WINLEN + 2);
	for (i = 0; i < ENH_WINLEN; i++)
		ybuf[2*i] = shl(initial_noise[i], shift);

	guard = fft_npp(ybuf, 1);
	/* guard = fft(ybuf, ENH_WINLEN, MONE_Q15); */

	/* get rough estimate of lambdaD  */
	temp_yy[0] = L_shr(L_mult(ybuf[0], ybuf[0]), 1);
	temp_yy[1] = 0;
	temp_yy[ENH_WINLEN] = L_shr(L_mult(ybuf[ENH_WINLEN], ybuf[ENH_WINLEN]), 1);
	temp_yy[ENH_WINLEN + 1] = 0;

	for (i = 2; i < ENH_WINLEN - 1; i += 2){
		temp_yy[i + 1] = 0;
		temp_yy[i] = L_shr(L_add(L_mult(ybuf[i], ybuf[i]),
								 L_mult(ybuf[i + 1], ybuf[i + 1])), 1);
	}

	L_sum = temp_yy[0];
	for (i = 1; i < ENH_WINLEN + 1; i++){
		if (L_sum < temp_yy[i])
			L_sum = temp_yy[i];
	}
	shift = norm_l(L_sum);
	for (i = 0; i < ENH_WINLEN + 1; i++)
		ybuf[i] = extract_h(L_shl(temp_yy[i], shift));
	shift = sub(shl(add(a_shift, guard), 1), add(shift, 7));

	/* convert to correlation domain */
	for (i = 0; i < ENH_WINLEN/2 - 1; i++){
		ybuf[ENH_WINLEN + 2*i + 2] = ybuf[ENH_WINLEN - 2*i - 2];
		ybuf[ENH_WINLEN + 2*i + 3] = negate(ybuf[ENH_WINLEN - 2*i - 2 + 1]);
	}
	guard = fft_npp(ybuf, -1);                    /* inverse fft */
	/* guard = fft(ybuf, ENH_WINLEN, ONE_Q15); */
	shift = add(shift, guard);
	shift = sub(shift, 8);
	for (i = 0; i < ENH_WINLEN; i++)
		initial_noise[i] = ybuf[2*i];

	max = 0;
	for (i = 0; i < ENH_WINLEN; i++){
		temp = abs_s(initial_noise[i]);
		if (temp > max)
			max = temp;
	}
	temp = norm_s(max);
	shift = sub(shift, temp);
	for (i = 0; i < ENH_WINLEN; i++)
		initial_noise[i] = shl(initial_noise[i], temp);

	smoothing_win(initial_noise);

	/* convert back to frequency domain */
	v_zap(ybuf, 2*ENH_WINLEN + 2);
	for (i = 0; i < ENH_WINLEN; i++)
		ybuf[2*i] = initial_noise[i];
	guard = fft_npp(ybuf, 1);
	/* guard = fft(ybuf, ENH_WINLEN, MONE_Q15); */
	for (i = 0; i <= (ENH_WINLEN*2); i += 2){
		if (ybuf[i] < 0)
			ybuf[i] = 0;
	}
	norm_shift = add(shift, guard);

	/* rough estimate of lambdaD */
	L_sum = L_shl(L_mult(NOISE_B_BY_NSMTH_B, ybuf[0]), 7);
	L_sum = L_add(L_sum, 2);
	shift = norm_l(L_sum);
	lambdaD[0] = extract_h(L_shl(L_sum, shift));
	lambdaD_shift[0] = add(norm_shift, sub(1, shift));
	L_sum = L_shr(L_sum, 8);

	L_data = L_shl(L_mult(NOISE_B_BY_NSMTH_B, ybuf[ENH_WINLEN]), 7);
	L_data = L_add(L_data, 2);
	shift = norm_l(L_data);
	lambdaD[ENH_WINLEN/2] = extract_h(L_shl(L_data, shift));
	lambdaD_shift[ENH_WINLEN/2] = add(norm_shift, sub(1, shift));
	L_sum = L_add(L_sum, L_shr(L_data, 8));

	for (i = 1; i < ENH_WINLEN/2; i++){
		L_data = L_shl(L_mult(NOISE_B_BY_NSMTH_B, ybuf[2*i]), 7);
		L_data = L_add(L_data, 2);
		shift = norm_l(L_data);
		lambdaD[i] = extract_h(L_shl(L_data, shift));
		lambdaD_shift[i] = add(norm_shift, sub(1, shift));
		L_sum = L_add(L_sum, L_shr(L_data, 7));
	}

	shift = norm_l(L_sum);
	n_pwr = extract_h(L_shl(L_sum, shift));
	n_pwr_shift = sub(add(norm_shift, 1), shift);

	/* compute initial long term SNR; speech signal power depends on
	   the window; the Hanning window is used as a reference here with
	   a squared norm of 96 Q4 */

	temp = 14648;                                              /* 0.894/2 Q15 */
	shift = 22;                                    /* exp = 22, sum = 1875000 */
	SN_LT = divide_s(temp, n_pwr);
	SN_LT_shift = sub(shift, n_pwr_shift);

	minstat_init();
}


/***************************************************************************/
/*	Subroutine minstat_init: initialization of variables for minimum	   */
/*							 statistics noise estimation				   */
/***************************************************************************/
static void		minstat_init()
{
	/* Initialize Minimum Statistics Noise Estimator */
	register Shortword	i;
	Shortword	shift;
	Longword	L_sum;


	v_equ(smoothedspect, lambdaD, ENH_VEC_LENF);
	v_scale(smoothedspect, ENH_INV_NOISE_BIAS, ENH_VEC_LENF);

	for (i = 0; i < NUM_MINWIN; i++){
		v_equ(circb[i], smoothedspect, ENH_VEC_LENF);
		v_equ(circb_shift[i], lambdaD_shift, ENH_VEC_LENF);
	}

	v_equ(sm_shift, lambdaD_shift, ENH_VEC_LENF);
	v_equ(act_min, smoothedspect, ENH_VEC_LENF);
	v_equ(act_min_shift, lambdaD_shift, ENH_VEC_LENF);
	v_equ(act_min_sub, smoothedspect, ENH_VEC_LENF);
	v_equ(act_min_sub_shift, lambdaD_shift, ENH_VEC_LENF);
	v_equ(noisespect, smoothedspect, ENH_VEC_LENF);
	v_equ(noise_shift, lambdaD_shift, ENH_VEC_LENF);

	for (i = 0; i < ENH_VEC_LENF; i++){
		var_sp_av[i] = mult(smoothedspect[i], 20066);       /* Q14, sqrt(3/2) */
		av_shift[i] = add(lambdaD_shift[i], 1);
		L_sum = L_mult(smoothedspect[i], smoothedspect[i]);
		shift = norm_l(L_sum);
		var_sp_2[i] = extract_h(L_shl(L_sum, shift));
		av2_shift[i] = sub(shl(lambdaD_shift[i], 1), sub(shift, 1));
	}

	alphacorr = X09_Q15;
}


/***************************************************************************/
/* Subroutine:		process_frame
**
** Description:     Enhance a given frame of speech
**
** Arguments:
**
**  Shortword   inspeech[]  ---- input speech data buffer (Q0)
**  Shortword   outspeech[] ---- output speech data buffer (Q0)
**
** Return value:    None
**
 ***************************************************************************/
static void		process_frame(Shortword inspeech[], Shortword outspeech[])
{
	register Shortword	i;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -