📄 kineticsest1_int.m
字号:
function KineticsEst1_int
% 动力学参数辨识: 用积分法进行反应速率分析得到速率常数k和反应级数n
% Analysis of kinetic rate data by using the integral method
%
% Author: HUANG Huajiang
% Copyright 2003 UNILAB Research Center,
% East China University of Science and Technology, Shanghai, PRC
% $Revision: 1.0 $ $Date: 2003/07/27 $
%
% Reaction of the type -- rate = kCA^order
% order - reaction order
% rate -- reaction rate vector
% CA -- concentration vector for reactant A
% T -- vector of reaction time
% N -- number of data points
% k- reacion rate constant
clear all
clc
global CAm
t = [0 20 40 60 120 180 300];
CAm = [10 8 6 5 3 2 1]';
% 非线性拟合
beta0 = [0.0053 1.39];
tspan = [0 20 40 60 120 180 300];
CA0 = 10;
[beta,resnorm,resid,exitflag,output,lambda,jacobian] = ...
lsqnonlin(@OptObjFunc,beta0,[],[],[],tspan,CA0,CAm)
ci = nlparci(beta,resid,jacobian)
% 拟合效果图(实验与拟合的比较)
[t4plot CA4plot] = ode45(@KineticsEqs,[tspan(1) tspan(end)],CA0,[],beta);
plot(t,CAm,'bo',t4plot,CA4plot,'k-')
legend('Exp','Model')
xlabel('时间t, s')
ylabel('浓度C_A, mol/L')
% 残差关于拟合值的残差图
[t CAc] = ode45(@KineticsEqs,tspan,CA0,[],beta);
figure
plot(CAc,resid,'*')
xlabel('浓度拟合值(mol/L)')
ylabel('残差R (mol/L)')
refline(0,0)
% 参数辨识结果
fprintf('Estimated Parameters:\n')
fprintf('\tk = %.4f ± %.4f\n',beta(1),ci(1,2)-beta(1))
fprintf('\tn = %.2f ± %.2f\n',beta(2),ci(2,2)-beta(2))
% ------------------------------------------------------------------
function f = OptObjFunc(beta,tspan,CA0,CAm)
[t CAc] = ode45(@KineticsEqs,tspan,CA0,[],beta);
f = CAc - CAm;
% ------------------------------------------------------------------
function dCAdt = KineticsEqs(t,CA,beta)
dCAdt = -beta(1)*CA^beta(2); % k = beta(1), n = beta(2)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -