📄 constructw.m
字号:
function [W, elapse] = constructW(fea,options)
% Usage:
% W = constructW(fea,options)
%
% fea: Rows of vectors of data points. Each row is x_i
% options: Struct value in Matlab. The fields in options that can be set:
% Metric - Choices are:
% 'Euclidean' - Will use the Euclidean distance of two data
% points to evaluate the "closeness" between
% them. [Default One]
% 'Cosine' - Will use the cosine value of two vectors
% to evaluate the "closeness" between them.
% A popular similarity measure used in
% Information Retrieval.
%
% NeighborMode - Indicates how to construct the graph. Choices
% are: [Default 'KNN']
% 'KNN' - k = 0
% Complete graph
% k > 0
% Put an edge between two nodes if and
% only if they are among the k nearst
% neighbors of each other. You are
% required to provide the parameter k in
% the options. Default k=5.
% 'Supervised' - k = 0
% Put an edge between two nodes if and
% only if they belong to same class.
% k > 0
% Put an edge between two nodes if
% they belong to same class and they
% are among the k nearst neighbors of
% each other.
% Default: k=0
% You are required to provide the label
% information gnd in the options.
%
% WeightMode - Indicates how to assign weights for each edge
% in the graph. Choices are:
% 'Binary' - 0-1 weighting. Every edge receiveds weight
% of 1. [Default One]
% 'HeatKernel' - If nodes i and j are connected, put weight
% W_ij = exp(-norm(x_i - x_j)/2t^2). This
% weight mode can only be used under
% 'Euclidean' metric and you are required to
% provide the parameter t.
% 'Cosine' - If nodes i and j are connected, put weight
% cosine(x_i,x_j). Can only be used under
% 'Cosine' metric.
%
% k - The parameter needed under 'KNN' NeighborMode.
% Default will be 5.
% gnd - The parameter needed under 'Supervised'
% NeighborMode. Colunm vector of the label
% information for each data point.
% bLDA - 0 or 1. Only effective under 'Supervised'
% NeighborMode. If 1, the graph will be constructed
% to make LPP exactly same as LDA. Default will be
% 0.
% t - The parameter needed under 'HeatKernel'
% WeightMode. Default will be 1
% bNormalized - 0 or 1. Only effective under 'Cosine' metric.
% Indicates whether the fea are already be
% normalized to 1. Default will be 0
% bSelfConnected - 0 or 1. Indicates whether W(i,i) == 1. Default 1
% if 'Supervised' NeighborMode & bLDA == 1,
% bSelfConnected will always be 1. Default 1.
%
%
% Examples:
%
% fea = rand(50,15);
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'KNN';
% options.k = 5;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
%
%
% fea = rand(50,15);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
%
%
% fea = rand(50,15);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.bLDA = 1;
% W = constructW(fea,options);
%
%
% For more details about the different ways to construct the W, please
% refer:
% Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using
% Locality Preserving Indexing" IEEE TKDE, Dec. 2005.
%
%
% Written by Deng Cai (dengcai2 AT cs.uiuc.edu), April/2004, Feb/2006,
% May/2007
%
if (~exist('options','var'))
options = [];
else
if ~isstruct(options)
error('parameter error!');
end
end
%=================================================
if ~isfield(options,'Metric')
options.Metric = 'Cosine';
end
switch lower(options.Metric)
case {lower('Euclidean')}
case {lower('Cosine')}
if ~isfield(options,'bNormalized')
options.bNormalized = 0;
end
otherwise
error('Metric does not exist!');
end
%=================================================
if ~isfield(options,'NeighborMode')
options.NeighborMode = 'KNN';
end
switch lower(options.NeighborMode)
case {lower('KNN')} %For simplicity, we include the data point itself in the kNN
if ~isfield(options,'k')
options.k = 5;
end
case {lower('Supervised')}
if ~isfield(options,'bLDA')
options.bLDA = 0;
end
if options.bLDA
options.bSelfConnected = 1;
end
if ~isfield(options,'k')
options.k = 0;
end
if ~isfield(options,'gnd')
error('Label(gnd) should be provided under ''Supervised'' NeighborMode!');
end
if ~isempty(fea) && length(options.gnd) ~= size(fea,1)
error('gnd doesn''t match with fea!');
end
otherwise
error('NeighborMode does not exist!');
end
%=================================================
if ~isfield(options,'WeightMode')
options.WeightMode = 'Binary';
end
bBinary = 0;
switch lower(options.WeightMode)
case {lower('Binary')}
bBinary = 1;
case {lower('HeatKernel')}
if ~strcmpi(options.Metric,'Euclidean')
warning('''HeatKernel'' WeightMode should be used under ''Euclidean'' Metric!');
options.Metric = 'Euclidean';
end
if ~isfield(options,'t')
options.t = 1;
end
case {lower('Cosine')}
if ~strcmpi(options.Metric,'Cosine')
warning('''Cosine'' WeightMode should be used under ''Cosine'' Metric!');
options.Metric = 'Cosine';
end
if ~isfield(options,'bNormalized')
options.bNormalized = 0;
end
otherwise
error('WeightMode does not exist!');
end
%=================================================
if ~isfield(options,'bSelfConnected')
options.bSelfConnected = 1;
end
%=================================================
tmp_T = cputime;
if isfield(options,'gnd')
nSmp = length(options.gnd);
else
nSmp = size(fea,1);
end
maxM = 62500000; %500M
BlockSize = floor(maxM/(nSmp*3));
if strcmpi(options.NeighborMode,'Supervised')
Label = unique(options.gnd);
nLabel = length(Label);
if options.bLDA
G = zeros(nSmp,nSmp);
for idx=1:nLabel
classIdx = options.gnd==Label(idx);
G(classIdx,classIdx) = 1/sum(classIdx);
end
W = sparse(G);
elapse = cputime - tmp_T;
return;
end
switch lower(options.WeightMode)
case {lower('Binary')}
if options.k > 0
G = zeros(nSmp*(options.k+1),3);
idNow = 0;
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
D = EuDist2(fea(classIdx,:),[],0);
[dump idx] = sort(D,2); % sort each row
clear D dump;
idx = idx(:,1:options.k+1);
nSmpClass = length(classIdx)*(options.k+1);
G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]);
G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:));
G(idNow+1:nSmpClass+idNow,3) = 1;
idNow = idNow+nSmpClass;
clear idx
end
G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp);
G = max(G,G');
else
G = zeros(nSmp,nSmp);
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
G(classIdx,classIdx) = 1;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -