📄 matlab vector guid代码矢量化指南.txt
字号:
发信人: coolor (2003之春倒计时), 信区: MathTools
标 题: (译)MATLAB代码矢量化指南
发信站: BBS 水木清华站 (Tue Nov 12 00:43:16 2002), 站内
本文节译自http://www.mathworks.com/support/tech-notes/
1100/1109.shtml
Revison: 2.0 Last Date Modified: 15-October-2002
翻译:coolor@smth
感谢:smth2008@smth提供他的译稿。本文多处参考或引用他的译文
=========================================================
一、基本技术
-----------------------------------------------------
1)MATLAB索引或引用(MATLAB Indexing or Referencing)
在MATLAB中有三种基本方法可以选取一个矩阵的子阵。它们分别是
下标法,线性法和逻辑法(subscripted, linear, and logical)。
如果你已经熟悉这个内容,请跳过本节
1.1)下标法
非常简单,看几个例子就好。
A = 6:12;
A([3,5])
发信人: coolor (2003之春倒计时), 信区: MathTools
标 题: (译)MATLAB代码矢量化指南
发信站: BBS 水木清华站 (Tue Nov 12 00:43:16 2002), 站内
本文节译自http://www.mathworks.com/support/tech-notes/
1100/1109.shtml
Revison: 2.0 Last Date Modified: 15-October-2002
翻译:coolor@smth
感谢:smth2008@smth提供他的译稿。本文多处参考或引用他的译文
=========================================================
一、基本技术
-----------------------------------------------------
1)MATLAB索引或引用(MATLAB Indexing or Referencing)
在MATLAB中有三种基本方法可以选取一个矩阵的子阵。它们分别是
下标法,线性法和逻辑法(subscripted, linear, and logical)。
如果你已经熟悉这个内容,请跳过本节
1.1)下标法
非常简单,看几个例子就好。
A = 6:12;
A([3,5])
ans =
8 10
A([3:2:end])
ans =
8 10 12
A = [11 14 17; ...
12 15 18; ...
13 16 19];
A(2:3,2)
ans =
15
16
1.2)线性法
二维矩阵以列优先顺序可以线性展开,可以通过现行展开后的元素序号
来访问元素。
A = [11 14 17; ...
12 15 18; ...
13 16 19];
A(6)
ans =
16
A([3,1,8])
ans =
13 11 18
A([3;1;8])
ans =
13
11
18
1.3)逻辑法
用一个和原矩阵具有相同尺寸的0-1矩阵,可以索引元素。在某个
位置上为1表示选取元素,否则不选。得到的结果是一个向量。
A = 6:10;
A(logical([0 0 1 0 1]))
ans =
8 10
A = [1 2
3 4];
B = [1 0 0 1];
A(logical(B))
ans =
1 4
-----------------------------------------------------
2)数组操作和矩阵操作(Array Operations vs. Matrix Operations)
对矩阵的元素一个一个孤立进行的操作称作数组操作;而把矩阵视为
一个整体进行的运算则成为矩阵操作。MATLAB运算符*,/,\,^都是矩阵
运算,而相应的数组操作则是.*, ./, .\, .^
A=[1 0 ;0 1];
B=[0 1 ;1 0];
A*B % 矩阵乘法
ans =
0 1
1 0
A.*B % A和B对应项相乘
ans =
0 0
0 0
------------------------------------------------------
3)布朗数组操作(Boolean Array Operations)
对矩阵的比较运算是数组操作,也就是说,是对每个元素孤立进行的。
因此其结果就不是一个“真”或者“假”,而是一堆“真假”。这个
结果就是布朗数组。
D = [-0.2 1.0 1.5 3.0 -1.0 4.2 3.14];
D >= 0
ans =
0 1 1 1 0 1 1
如果想选出D中的正元素:
D = D(D>0)
D =
1.0000 1.5000 3.0000 4.2000 3.1400
除此之外,MATLAB运算中会出现NaN,Inf,-Inf。对它们的比较参见下例
Inf==Inf返回真
Inf<1返回假
NaN==NaN返回假
同时,可以用isinf,isnan判断,用法可以顾名思义。
在比较两个矩阵大小时,矩阵必须具有相同的尺寸,否则会报错。这是
你用的上size和isequal,isequalwithequalnans(R13及以后)。
------------------------------------------------------
4)从向量构建矩阵(Constructing Matrices from Vectors)
在MATLAB中创建常数矩阵非常简单,大家经常使用的是:
A = ones(5,5)*10
但你是否知道,这个乘法是不必要的?
A = 10;
A = A(ones(5,5))
A =
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
类似的例子还有:
v = (1:5)';
n = 3;
M = v(:,ones(n,1))
M =
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
事实上,上述过程还有一种更加容易理解的实现方法:
A = repmat(10,[5 5]);
M = repmat([1:5]', [1,3]);
其中repmat的含义是把一个矩阵重复平铺,生成较大矩阵。
更多详细情况,参见函数repmat和meshgrid。
-----------------------------------------------------
5)相关函数列表(Utility Functions)
ones 全1矩阵
zeros 全0矩阵
reshape 修改矩阵形状
repmat 矩阵平铺
meshgrid 3维plot需要用到的X-Y网格矩阵
ndgrid n维plot需要用到的X-Y-Z...网格矩阵
filter 一维数字滤波器,当数组元素前后相关时特别有用。
cumsum 数组元素的逐步累计
cumprod 数组元素的逐步累计
eye 单位矩阵
diag 生成对角矩阵或者求矩阵对角线
spdiags 稀疏对角矩阵
gallery 不同类型矩阵库
pascal Pascal 矩阵
hankel Hankel 矩阵
toeplitz Toeplitz 矩阵
==========================================================
二、扩充的例子
------------------------------------------------------
6)作用于两个向量的矩阵函数
假设我们要计算两个变量的函数F
F(x,y) = x*exp(-x^2 - y^2)
我们有一系列x值,保存在x向量中,同时我们还有一系列y值。
我们要对向量x上的每个点和向量y上的每个点计算F值。换句话
说,我们要计算对于给定向量x和y的所确定的网格上的F值。
使用meshgrid,我们可以复制x和y来建立合适的输入向量。然后
可以使用第2节中的方法来计算这个函数。
x = (-2:.2:2);
y = (-1.5:.2:1.5)';
[X,Y] = meshgrid(x, y);
F = X .* exp(-X.^2 - Y.^2);
如果函数F具有某些性质,你甚至可以不用meshgrid,比如
F(x,y) = x*y ,则可以直接用向量外积
x = (-2:2);
y = (-1.5:.5:1.5);
x'*y
在用两个向量建立矩阵时,在有些情况下,稀疏矩阵可以更加有
效地利用存储空间,并实现有效的算法。我们将在第8节中以一个
实例来进行更详细地讨论.
--------------------------------------------------------
7)排序、设置和计数(Ordering, Setting, and Counting Operations)
在迄今为止讨论过的例子中,对向量中一个元素的计算都是独立
于同一向量的其他元素的。但是,在许多应用中,你要做的计算
则可能与其它元素密切相关。例如,假设你用一个向量x来表示一
个集合。不观察向量的其他元素,你并不知道某个元素是不是一
个冗余元素,并应该被去掉。如何在不使用循环语句的情况下删除
冗余元素,至少在现在,并不是一个明显可以解决的问题。
解决这类问题需要相当的智巧。以下介绍一些可用的基本工具
max 最大元素
min 最小元素
sort 递增排序
unique 寻找集合中互异元素(去掉相同元素)
diff 差分运算符[X(2) - X(1), X(3) - X(2), ... X(n) - X(n-1)]
find 查找非零、非NaN元素的索引值
union 集合并
intersect 集合交
setdiff 集合差
setxor 集合异或
继续我们的实例,消除向量中的多余元素。注意:一旦向量排序后,
任何多余的元素就是相邻的了。同时,在任何相等的相邻元素在向量
diff运算时变为零。这是我们能够应用以下策略达到目的。我们现在
在已排序向量中,选取那些差分非零的元素。
% 初次尝试。不太正确!
x = sort(x(:));
difference = diff(x);
y = x(difference~=0);
这离正确结果很近了,但是我们忘了diff函数返回向量的元素个数比
输入向量少1。在我们的初次尝试中,没有考虑到最后一个元素也可能
是相异的。为了解决这个问题,我们可以在进行差分之前给向量x加入
一个元素,并且使得它与以前的元素一定不同。一种实现的方法是增
加一个NaN。
% 最终的版本。
x = sort(x(:));
difference = diff([x;NaN]);
y = x(difference~=0);
我们使用(:)运算来保证x是一个向量。我们使用~=0运算,而不用find
函数,因为find函数不返回NaN元素的索引值,而我们操作中差分的最
后元素一定是NaN。这一实例还有另一种实现方式:
y=unique(x);
后者当然很简单,但是前者作为一个练习并非无用,它是为了练习使用
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -