📄 c9pd.m
字号:
'(ch9p1) Example 9.3' % Display label.
clf % Clear graph on screen.
'Uncompensated System' % Display label.
numg=[0.9*[1 255.35 12.7650]]; % Generate numerator of G(s).
deng=[(33.2*10^-3*2.88*10^-5) (33.2*10^-3*.0172)+(16*2.880*10^-5) (.611*.09) 0 0]; % Generate denominator of G(s).
'G(s)' % Display label.
G=tf(numg,deng) % Create and display G(s).
pos=input('Type desired percent overshoot ');
% Input desired percent overshoot.
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2);
% Calculate damping ratio.
rlocus(G) % Plot uncompensated root locus.
axis([-100 40 -800 800]);
sgrid(z,0) % Overlay desired percent overshoot
% line.
title(['Uncompensated Root Locus with ' , num2str(pos),...
'% Overshoot Line']) % Title uncompensated root locus.
[K,p]=rlocfind(G); % Generate gain, K, and closed-loop
% poles, p, for point selected
% interactively on the root locus.
'Closed-loop poles = ' % Display label.
p % Display closed-loop poles.
f=input('Give pole number that is operating point ');
% Choose uncompensated system
% dominant pole.
'Summary of estimated specifications for selected point on'
'uncompensated root locus' % Display label.
operatingpoint=p(f) % Display uncompensated dominant
% pole.
gain=K % Display uncompensated gain.
estimated_settling_time=4/abs(real(p(f)))
% Display uncompensated settling
% time.
estimated_peak_time=pi/abs(imag(p(f)))
% Display uncompensated peak time.
estimated_percent_overshoot=pos % Display uncompensated percent
% overshoot.
estimated_damping_ratio=z % Display uncompensated damping
% ratio.
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)
% Display uncompensated natural
% frequency.
numkv=conv([1 0],numg); % Set up numerator to evaluate Kv.
denkv=deng; % Set up denominator to evaluate Kv.
sG=tf(numkv,denkv); % Create sG(s).
sG=minreal(sG); % Cancel common poles and zeros.
Kv=dcgain(K*sG) % Display uncompensated Kv.
ess=1/Kv % Display uncompensated steady-state
% error for unit ramp input.
'T(s)' % Display label.
T=feedback(K*G,1) % Find uncompensated T(s).
step(T) % Plot step response of uncompensated
% system.
title(['Uncompensated System Step Response with ',num2str(pos),...
'% Overshoot']) % Add title to uncompensated step
% response.
'Press any key to go to PD compensation'
% Display label.
pause
'Compensated system' % Display label.
Ts=input('Type Desired Settling Time ');
% Input desired settling time from
% the keyboard.
wn=4/(Ts*z); % Calculate natural frequency.
desired_pole=(-z*wn)+(wn*sqrt(1-z^2)*i);
% Calculate desired dominant pole
% location.
angle_at_desired_pole=(180/pi)*...
angle(polyval(numg,desired_pole)/polyval(deng,desired_pole));
% Calculate angular contribution to
% desired pole without PD
% compensator.
PD_angle=180-angle_at_desired_pole; % Calculate required angular
% contribution from PD compensator.
zc=((imag(desired_pole)/tan(PD_angle*pi/180))-real(desired_pole));
% Calculate PD zero location.
'PD Compensator' % Display label.
numc=[1 zc]; % Calculate numerator of Gc(s).
denc=[0 1]; % Calculate denominator of Gc(s).
'Gc(s)' % Display label.
Gc=tf(numc,denc) % Create and display Gc(s).
'G(s)Gc(s)' % Display label.
Ge=G*Gc % Cascade G(s) and Gc(s).
rlocus(Ge,0:0.5:100) % Plot root locus of PD compensated
% system.
sgrid(z,0) % Overlay desired percent overshoot
% line.
title(['PD Compensated Root Locus with ' , num2str(pos),...
'% Overshoot Line']) % Add title to PD compensated root
% locus.
[K,p]=rlocfind(Ge); % Generate gain, K, and closed-loop
% poles, p, for point selected
% interactively on the root locus.
'Closed-loop poles = ' % Display label.
p % Display PD compensated system's
% closed-loop poles.
f=input('Give pole number that is operating point ');
% Choose PD compensated system
% dominant pole.
'Summary of estimated specifications for selected point on PD'
'compensated root locus' % Display label.
operatingpoint=p(f) % Display PD compensated dominant
% pole.
gain=K % Display PD compensated gain.
estimated_settling_time=4/abs(real(p(f)))
% Display PD compensated settling
% time.
estimated_peak_time=pi/abs(imag(p(f)))
% Display PD compensated peak time.
estimated_percent_overshoot=pos % Display PD compensated percent
% overshoot.
estimated_damping_ratio=z % Display PD compensated damping
% ratio.
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)
% Display PD compensated natural
% frequency.
s=tf([1 0],1); % Create transfer function, 's'.
sGe=s*Ge; % Create sGe(s).
sGe=minreal(sGe); % Cancel common poles and zeros.
Kv=dcgain(K*sGe) % Display compensated Kv.
ess=1/Kv % Display compensated steady-state
% error for unit ramp input.
'T(s)' % Display label.
T=feedback(K*Ge,1) % Create and display PD compensated
% T(s).
'Press any key to continue and obtain the PD compensated step response'
% Display label.
pause
step(T) % Plot step response for PD
% compensated system.
title(['PD Compensated System Step Response with ' ,num2str(pos),...
'% Overshoot']) % Add title to step response of PD
% compensated system.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -