⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s3c2450_fil.c

📁 s3c2450 bsp for wince 5.0 PM_REL_0.04_080519 经验证,完全没问题
💻 C
📖 第 1 页 / 共 5 页
字号:
	{
		NF_CE_H(nBank);
		NF_SET_CLK(DUMMY_R_TACLS, DUMMY_R_TWRPH0, DUMMY_R_TWRPH1);		// Don't set clk to (0, 0, 0) !!! Decoding error occurs
#if (NAND_TRANS_MODE == ASM)
		if (SECTORS_PER_PAGE == 4)
		{
			_Write_Dummy_468Byte_AllFF();
		}
		else if (SECTORS_PER_PAGE == 8)
		{
			_Write_Dummy_428Byte_AllFF();
		}
#elif (NAND_TRANS_MODE == DMA)
		Write_Dummy_468Byte_AllFF_DMA();
#endif


	//NAND_MSG((_T("[FIL]++Read_Spare_MLC_5(%d)\r\n"), nPpn));
		NF_SET_CLK(DEFAULT_TACLS, DEFAULT_TWRPH0, DEFAULT_TWRPH1);
		NF_CE_L(nBank);

		//NF_MECC_Lock();	// Do NOT Lock MECC when using 4-bit ECC Decoding

		// Read Spare ECC
		NF_CLEAR_ECC_DEC_DONE();

		if (bCheckAllFF)
		{
			NF_CE_H(nBank);
			NF_SET_CLK(DUMMY_R_TACLS, DUMMY_R_TWRPH0, DUMMY_R_TWRPH1);		// Don't set clk to (0, 0, 0) !!! Decoding error occurs

			NF_DATA_W4(ECCVAL_ALLFF0);	// All 0xFF ECC
			NF_DATA_W4(ECCVAL_ALLFF1);

			NF_SET_CLK(DEFAULT_TACLS, DEFAULT_TWRPH0, DEFAULT_TWRPH1);
			NF_CE_L(nBank);
		}
		else
		{
			pSpareCxt[nPosPtr++] = NF_DATA_R4();	// Read 8 byte Spare ECC data,  ->ASECC[0]
			pSpareCxt[nPosPtr++] = NF_DATA_R4();	// Actually after read 7th byte, ECC decoding starts!!,  ->ASECC[1]
		}



	
		// Wait Spare ECC Compare Done
		NF_WAIT_ECC_DEC_DONE();
			   	//NAND_MSG((_T(" dbg(0x%x), Cnt : %d\r\n"), pNANDFConReg->NFSTAT,i));
		

				
		pSBuf =(UINT8*) &(pSpareCxt[NAND_SCXT_OFFSET/4]);
		nRet = Decoding_SpareECC(pSBuf);

		if (bCheckAllFF)
		{
			pSpareCxt[nPosPtr++] = NF_DATA_R4();	// Read 8 byte Spare ECC data  ->ASECC[0]
			pSpareCxt[nPosPtr++] = NF_DATA_R4();	// Actually after read 7th byte, ECC decoding starts!!  ->ASECC[1]
			//	NAND_MSG((_T("[FIL]++Read_Spare_MLC_8(%d)\r\n"), nPpn));
		}

		pSpareCxt[nPosPtr++] = NF_DATA_R4();	// Read 2nd Spare ECC  ->ASECC[2]
		pSpareCxt[nPosPtr++] = NF_DATA_R4();	// Actually after read 7th byte, ECC decoding starts!!  ->ASECC[3]

	//NAND_MSG((_T("[FIL]++Read_Spare_MLC_9(%d)\r\n"), nPpn));
_B_CheckMore:
		// 2nd Try
		if (nRet == ECC_UNCORRECTABLE_ERROR)
		{

			NAND_ERR((_T("[FIL:ERR] Read_Spare() : ECC Uncorrectable Error in Spare of Page %d 1st Time : 0x%x\r\n"), nPpn, nRet));
			if (bCheckMore == TRUE32) NAND_ERR((_T("[FIL:ERR] Read_Spare() : Try ECC Decoding again with 2nd SECC copy\r\n")));
			else                      NAND_ERR((_T("[FIL:ERR] Read_Spare() : Try ECC Decoding again with SECC bit change\r\n")));

			nOffset = BYTES_PER_MAIN_PAGE+NAND_SCXT_OFFSET;		// Position to SpareData

			NF_CMD(CMD_RANDOM_DATA_OUTPUT);
			NF_ADDR(nOffset&0xFF);
			NF_ADDR((nOffset>>8)&0xFF);
			NF_CMD(CMD_RANDOM_DATA_OUTPUT_CONFIRM);

			// Initialize 4-bit ECC Decoding
			NF_SET_ECC_DEC();
			NF_MECC_Reset();
			NF_MECC_UnLock();

			nPosPtr = NAND_SCXT_OFFSET/4;

			if (SECTORS_PER_PAGE == 4)
			{
				for (nCnt = 0; nCnt < (NAND_SECC_OFFSET-NAND_SCXT_OFFSET)/4; nCnt++)
					pSpareCxt[nPosPtr++] = NF_DATA_R4();		// 12 byte Spare Context(->aSpareData) + 32 byte Sector ECC data(->aMECC)
			}
			if (SECTORS_PER_PAGE == 8)
			{
				for (nCnt = 0; nCnt < (NAND_SECC_OFFSET_4K-NAND_SCXT_OFFSET)/4; nCnt++)
					pSpareCxt[nPosPtr++] = NF_DATA_R4();		// 20 byte Spare Context(->aSpareData) + 64 byte Sector ECC data(->aMECC)
			}

			NF_CE_H(nBank);
			NF_SET_CLK(DUMMY_R_TACLS, DUMMY_R_TWRPH0, DUMMY_R_TWRPH1);		// Don't set clk to (0, 0, 0) !!! Decoding error occurs

#if (NAND_TRANS_MODE == ASM)
			if (SECTORS_PER_PAGE == 4)
			{
				_Write_Dummy_468Byte_AllFF();
			}
			else if (SECTORS_PER_PAGE == 8)
			{
				_Write_Dummy_428Byte_AllFF();
			}
#elif (NAND_TRANS_MODE == DMA)
			Write_Dummy_468Byte_AllFF_DMA();
#endif

			//NF_MECC_Lock();	// Do NOT Lock MECC when using 4-bit ECC Decoding

			NF_CLEAR_ECC_DEC_DONE();

			if (bCheckMore == TRUE32)
			{
				NF_DATA_W4(pSpareCxt[(((SECTORS_PER_PAGE==4)?NAND_SECC2_OFFSET:NAND_SECC2_OFFSET_4K)/4)]);		// Write 2nd Spare ECC,  ->aSECC[2]
				NF_DATA_W4(pSpareCxt[(((SECTORS_PER_PAGE==4)?NAND_SECC2_OFFSET:NAND_SECC2_OFFSET_4K)/4)+1]);		// Actually after read 7th byte, ECC decoding starts!!  ->aSECC[3]
				bCheckMore = FALSE32;
			}
			else
			{
				NF_DATA_W4(pSpareCxt[(((SECTORS_PER_PAGE==4)?NAND_SECC_OFFSET:NAND_SECC_OFFSET_4K)/4)]);		// Write modified ECC for the 53th bit on SECC data  ->aSECC[0]
				NF_DATA_W4((pSpareCxt[(((SECTORS_PER_PAGE==4)?NAND_SECC_OFFSET:NAND_SECC_OFFSET_4K)/4)])^(1<<19));		// position to be modified on SECC[1]  ->aSECC[1]
				bCheckMore = TRUE32;
			}

			NF_SET_CLK(DEFAULT_TACLS, DEFAULT_TWRPH0, DEFAULT_TWRPH1);
			NF_CE_L(nBank);

			// Wait Spare ECC Compare Done
			NF_WAIT_ECC_DEC_DONE();

			nRet = Decoding_SpareECC((UINT8 *)pSpareCxt[NAND_SCXT_OFFSET/4]);		// ->aSpareData

			if (bCheckMore == TRUE32)
				goto _B_CheckMore;
		}
	}
	else
	{

		// just read Spare ECC from NAND for read pointer, NOT decoding ECC
		pSpareCxt[nPosPtr++] = NF_DATA_R4();			// 8 byte Spare ECC data,  ->aSECC[0]
		pSpareCxt[nPosPtr++] = NF_DATA_R4();
		pSpareCxt[nPosPtr++] = NF_DATA_R4();			// 8 byte Spare ECC data 2nd copy  ->aSECC[2]
		pSpareCxt[nPosPtr++] = NF_DATA_R4();
	}

	if (nRet&ECC_UNCORRECTABLE_ERROR)
	{
		NAND_ERR((_T("[FIL:ERR] Read_Spare() : ECC Uncorrectable Error in Spare of Page %d\r\n"), nPpn));
	}
	else if (nRet&ECC_CORRECTABLE_ERROR)
	{

		NAND_MSG((_T("[FIL] Read_Spare() : ECC Correctable Error in Spare of Page %d\r\n"), nPpn));
	}

	NAND_MSG((_T("[FIL]--Read_Spare()\r\n")));

	return nRet;
}

PRIVATE VOID
Write_Sector(UINT32 nPpn, UINT32 nSctOffset, UINT8* pBuf)
{
	UINT32 nOffset;
#if ECC_MODULE_TEST_SIMULATION
	BOOL32 bChangeData = FALSE;
#endif

	NAND_MSG((_T("[FIL]++Write_Sector(%d, %d)\r\n"), nPpn, nSctOffset));

#if ECC_MODULE_TEST_SIMULATION
Loop1:
#endif

	nOffset = NAND_SECTOR_SIZE*nSctOffset;

	NF_CMD(CMD_RANDOM_DATA_INPUT);
	NF_ADDR(nOffset&0xFF);
	NF_ADDR((nOffset>>8)&0xFF);

#if ECC_MODULE_TEST_SIMULATION
	if (IS_CHECK_SPARE_ECC == TRUE32 && bChangeData == FALSE)
#else
	if (IS_CHECK_SPARE_ECC == TRUE32)
#endif
	{
		// Initialize 4-bit ECC Encoding
		NF_SET_ECC_ENC();
		NF_MECC_Reset();
		NF_CLEAR_ECC_ENC_DONE();
		NF_MECC_UnLock();
	}
#if ECC_MODULE_TEST_SIMULATION
	else if (bChangeData == TRUE)
	{
		if (nSctOffset == 0)  // forcefully happen to error on 4-bit in case of ECC mobule error
		{
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+243) ^= (1<<4);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+419) ^= (1<<3);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+333) ^= (1<<2);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+308) ^= (1<<4);
		}
		else if (nSctOffset == 1)  // forcefully happen to error on 4-bit in case of ECC mobule error
		{
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+228) ^= (1<<0);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+400) ^= (1<<3);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+486) ^= (1<<4);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+165) ^= (1<<2);
		}
		else if (nSctOffset == 2)  // forcefully happen to error on 4-bit except ECC mobule error
		{
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+228) ^= (1<<0);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+400) ^= (1<<3);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+486) ^= (1<<4);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+165) ^= (1<<1);
		}
		else if (nSctOffset == 3)  // forcefully happen to error on 3-bit in case of ECC mobule error
		{
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+148) ^= (1<<3);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+435) ^= (1<<2);
			*(pBuf+NAND_SECTOR_SIZE*nSctOffset+501) ^= (1<<1);
		}
	}
#endif

#if (NAND_TRANS_MODE == ASM)
	if ((UINT32)pBuf&0x3)
	{
		_Write_512Byte_Unaligned(pBuf+NAND_SECTOR_SIZE*nSctOffset);
	}
	else
	{
		_Write_512Byte(pBuf+NAND_SECTOR_SIZE*nSctOffset);
	}
#elif (NAND_TRANS_MODE == DMA)
	Write_512Byte_DMA(pBuf+NAND_SECTOR_SIZE*nSctOffset);
#endif

#if ECC_MODULE_TEST_SIMULATION
	if (IS_CHECK_SPARE_ECC == TRUE32 && bChangeData == FALSE)
#else
	if (IS_CHECK_SPARE_ECC == TRUE32)
#endif
	{
		NF_MECC_Lock();

		// Waiting for Main ECC Encoding
		NF_WAIT_ECC_ENC_DONE();
	}

#if ECC_MODULE_TEST_SIMULATION
	if (bChangeData == FALSE)
	{
		bChangeData = TRUE;
		goto Loop1;
	}
#endif

	NAND_MSG((_T("[FIL]--Write_Sector()\r\n")));

	return;
}



PRIVATE VOID
Write_Spare(UINT32 nBank, UINT32 nPpn, pSECCCxt pSpareCxt)
{
	UINT32 nOffset;

	NAND_MSG((_T("[FIL]++Write_Spare(%d, %d)\r\n"), nBank, nPpn));

	nOffset = BYTES_PER_MAIN_PAGE;

	NF_CMD(CMD_RANDOM_DATA_INPUT);
	NF_ADDR(nOffset&0xFF);
	NF_ADDR((nOffset>>8)&0xFF);

	NF_DATA_W(pSpareCxt->cBadMark);			// 1 byte Bad Mark
	NF_DATA_W(pSpareCxt->cCleanMark);			// 1 byte Clean Mark

#if	1
	NF_DATA_W(0xff);			// 2 byte Reserved
	NF_DATA_W(0xff);
#else
	NF_DATA_W(pSpareCxt->cReserved[0]); 	// 2 byte Reserved
	NF_DATA_W(pSpareCxt->cReserved[1]);
#endif

	if (IS_CHECK_SPARE_ECC == TRUE32)
	{
		// Initialize 4-bit ECC Encoding
		NF_SET_ECC_ENC();
		NF_MECC_Reset();
		NF_CLEAR_ECC_ENC_DONE();
		NF_MECC_UnLock();
	}

	if (SECTORS_PER_PAGE == 4)
	{
		NF_DATA_W4(pSpareCxt->aSpareData[0]);		// 12 byte Spare Context
		NF_DATA_W4(pSpareCxt->aSpareData[1]);
		NF_DATA_W4(pSpareCxt->aSpareData[2]);

		NF_DATA_W4(pSpareCxt->aMECC[0]);		// 8 byte Sector0 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[1]);
		NF_DATA_W4(pSpareCxt->aMECC[2]);		// 8 byte Sector1 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[3]);
		NF_DATA_W4(pSpareCxt->aMECC[4]);		// 8 byte Sector2 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[5]);
		NF_DATA_W4(pSpareCxt->aMECC[6]);		// 8 byte Sector3 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[7]);
	}
	else if (SECTORS_PER_PAGE == 8)
	{
		NF_DATA_W4(pSpareCxt->aSpareData[0]);		// 20 byte Spare Context for 4KByte/Page
		NF_DATA_W4(pSpareCxt->aSpareData[1]);
		NF_DATA_W4(pSpareCxt->aSpareData[2]);
		NF_DATA_W4(pSpareCxt->aSpareData[3]);
		NF_DATA_W4(pSpareCxt->aSpareData[4]);

		NF_DATA_W4(pSpareCxt->aMECC[0]);		// 8 byte Sector0 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[1]);
		NF_DATA_W4(pSpareCxt->aMECC[2]);		// 8 byte Sector1 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[3]);
		NF_DATA_W4(pSpareCxt->aMECC[4]);		// 8 byte Sector2 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[5]);
		NF_DATA_W4(pSpareCxt->aMECC[6]);		// 8 byte Sector3 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[7]);
		NF_DATA_W4(pSpareCxt->aMECC[8]);		// 8 byte Sector4 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[9]);
		NF_DATA_W4(pSpareCxt->aMECC[10]);		// 8 byte Sector5 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[11]);
		NF_DATA_W4(pSpareCxt->aMECC[12]);		// 8 byte Sector6 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[13]);
		NF_DATA_W4(pSpareCxt->aMECC[14]);		// 8 byte Sector7 ECC data
		NF_DATA_W4(pSpareCxt->aMECC[15]);
	}
	else
	{
		WMR_ASSERT(FALSE32);
	}

	if (IS_CHECK_SPARE_ECC == TRUE32)
	{
		// Write Dummy 500 byte for ECC Encoding using CE Don't care
		NF_CE_H(nBank);
		NF_SET_CLK(DUMMY_W_TACLS, DUMMY_W_TWRPH0, DUMMY_W_TWRPH1);		// Don't set clk to (0, 0, 0) !!! Decoding error occurs
#if (NAND_TRANS_MODE == ASM)
		if (SECTORS_PER_PAGE == 4)
		{
			_Write_Dummy_468Byte_AllFF();
		}
		else if (SECTORS_PER_PAGE == 8)
		{
			_Write_Dummy_428Byte_AllFF();
		}
#elif (NAND_TRANS_MODE == DMA)
		Write_Dummy_468Byte_AllFF_DMA();
#endif
		NF_SET_CLK(DEFAULT_TACLS, DEFAULT_TWRPH0, DEFAULT_TWRPH1);
		NF_CE_L(nBank);

		NF_MECC_Lock();

		// Waiting for Main ECC Encoding
		NF_WAIT_ECC_ENC_DONE();

		pSpareCxt->aSECC[0] = NF_MECC0();	// Spare ECC x 2 copies
		pSpareCxt->aSECC[1] = NF_MECC1();
		pSpareCxt->aSECC[2] = NF_MECC0();
		pSpareCxt->aSECC[3] = NF_MECC1();
	}

	NF_DATA_W4(pSpareCxt->aSECC[0]);		// Spare ECC 8 bytes
	NF_DATA_W4(pSpareCxt->aSECC[1]);
	NF_DATA_W4(pSpareCxt->aSECC[2]);		// Spare ECC 8 bytes 2nd copy
	NF_DATA_W4(pSpareCxt->aSECC[3]);

	NAND_MSG((_T("[FIL]--Write_Spare()\r\n")));

	return;
}


#define NUMBER_OF_ECC_ERROR 3

PRIVATE UINT32
Decoding_MainECC(UINT8* pBuf)
{
	UINT32 nError0, nError1;
	UINT32 nErrorCnt, nErrorByte, nErrorPattern;
	UINT32 nRet = 0;
	UINT8  nErrorBitPat;

	NAND_MSG((_T("[FIL]++Decoding_MainECC()\r\n")));

	nError0 = NF_ECC_ERR0();
	nError1 = NF_ECC_ERR1();

	nErrorCnt = (nError0>>26)&0x7;

	if (nErrorCnt == 0)			// No Error
	{
		NAND_MSG((_T("[FIL] Decoding_MainECC() : No ECC Error\r\n")));
	}
	else if (nErrorCnt > 4)			// Uncorrectable Error
	{
		NAND_ERR((_T("[FIL:ERR] Decoding_MainECC() : Uncorrectable Error\r\n")));
		nRet = ECC_UNCORRECTABLE_ERROR;
	}
	else							// Correctable Error
	{
		NAND_MSG((_T("[FIL] Decoding_MainECC() : Correctable Error %d bit\r\n"), nErrorCnt));

		nErrorPattern = NF_ECC_ERR_PATTERN();

		// 1st Bit Error Correction
		nErrorByte = nError0&0x3ff;
		nErrorBitPat = (UINT8)(nErrorPattern&0xff

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -