📄 uart_device.v
字号:
////////////////////////////////////////////////////////////////////////// //////// uart_device.v //////// //////// This file is part of the "uart16550" project //////// http://www.opencores.org/projects/uart16550/ //////// //////// Author(s): //////// - tadej@opencores.org (Tadej Markovic) //////// - igorm@opencores.org (Igor Mohor) //////// //////// All additional information is avaliable in the README.txt //////// file. //////// //////// ////////////////////////////////////////////////////////////////////////////// //////// Copyright (C) 2000 - 2004 authors //////// //////// This source file may be used and distributed without //////// restriction provided that this copyright statement is not //////// removed from the file and that any derivative work contains //////// the original copyright notice and the associated disclaimer. //////// //////// This source file is free software; you can redistribute it //////// and/or modify it under the terms of the GNU Lesser General //////// Public License as published by the Free Software Foundation; //////// either version 2.1 of the License, or (at your option) any //////// later version. //////// //////// This source is distributed in the hope that it will be //////// useful, but WITHOUT ANY WARRANTY; without even the implied //////// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //////// PURPOSE. See the GNU Lesser General Public License for more //////// details. //////// //////// You should have received a copy of the GNU Lesser General //////// Public License along with this source; if not, download it //////// from http://www.opencores.org/lgpl.shtml //////// ////////////////////////////////////////////////////////////////////////////// CVS Revision History//// $Log: uart_device.v,v $// Revision 1.1 2004/03/27 03:55:16 tadejm// Testbench with complete selfchecking. BUG is that THRE status is set at the end of last sent bit when TX FIFO is empty instead when only TX FIFO gets empty. This causes testcases not to finish.//////`include "uart_testbench_defines.v"`include "timescale.v"module uart_device( // UART signals stx_i, srx_o, // Modem signals rts_i, cts_o, dtr_i, dsr_o, ri_o, dcd_o);// IN/OUT signals//############### // UART signals input stx_i; output srx_o; // Modem signals input rts_i; output cts_o; input dtr_i; output dsr_o; output ri_o; output dcd_o;// INTERNAL signals//################# // Clock generation signals //######################### // Operational and transmission clock signals reg rx_clk; // RX device clock with period T_clk_period (should be equal to wb_clk_period) reg tx_clk; // TX device clock with period (T_clk_period + T_clk_delay) reg tx_clk_divided; // divided TX device clock with period ((T_clk_period + T_clk_delay) * T_divisor * 16) // Clock enable signals reg rx_clk_en = 1'b1; reg tx_clk_en = 1'b1; reg tx_clk_divided_en = 1'b1; // Clock period variables real T_clk_period = 20; real T_clk_delay = 0; integer T_divisor = 5; // IN/OUT assignment signals //########################## // Modem signals wire rts; wire dtr; // UART receiver signals //###################### // RX packet control signals wire rx; reg [3:0] rx_length; reg rx_odd_parity; reg rx_even_parity; reg rx_stick1_parity; reg rx_stick0_parity; reg rx_parity_enabled; reg rx_stop_bit_1; reg rx_stop_bit_1_5; reg rx_stop_bit_2; // RX logic signals wire [3:0] rx_total_length; wire [5:0] rx_break_detection_length; reg rx_packet_end; reg rx_packet_end_q; reg rx_clk_cnt_en; reg [31:0] rx_clk_cnt; reg rx_sample_clock; integer rx_bit_index; integer rx_stop_bit_index; reg [7:0] rx_data; reg [1:0] rx_stop; reg rx_framing_error; reg rx_parity; reg rx_parity_error; reg rx_break_detected; reg rx_break_detected_q; reg [31:0] rx_break_cnt; // RX events event device_received_packet; event device_received_last_bit; event device_received_stop_bit; event device_detected_rx_break; // UART transmitter signals //######################### // TX packet control signals reg tx; reg [3:0] tx_length; reg tx_odd_parity; reg tx_even_parity; reg tx_stick1_parity; reg tx_stick0_parity; reg tx_parity_enabled; reg tx_parity_wrong; reg tx_framing_wrong; // TX logic signals reg [23:0] tx_glitch_num; reg start_tx_glitch_cnt; reg [31:0] tx_glitch_cnt; reg tx_glitch; reg tx_break_enable; reg [15:0] tx_break_num; reg start_tx_break_cnt; reg [31:0] tx_break_cnt; reg tx_break; // TX test signals reg [7:0] sent_data; reg tx_accept_next_framing_err; reg tx_framing_err; reg tx_framing_glitch_err; // TX events event device_sent_packet; event sent_packet_received;// Clock generation//################# // Example of TESTBENCH's task for setting UART clock period: // ---------------- // task set_uart_clk_period; // input [31:0] clk_period; // begin // //@(posedge testbench.uart_device.clk); // testbench.uart_device.T_clk_period = clk_period; // end // endtask // set_uart_clk_period // ---------------- // Example of TESTBENCH's task for setting UART clock rising edge // delayed for time_delay_i after WB clock rising edge: // ---------------- // task uart_clk_follows_wb_clk; // input [31:0] time_delay_i; // integer time_delay; // begin // time_delay = time_delay_i; // @(posedge testbench.uart_device.clk); // testbench.uart_device.clk_en = 1'b0; // @(posedge wb_clk); // #time_delay testbench.uart_device.clk = 1'b1; // testbench.uart_device.clk_en = 1'b1; // end // endtask // uart_clk_follows_wb_clk // ---------------- // rx_clk rising edge always@(posedge rx_clk) if (rx_clk_en) #(T_clk_period / 2) rx_clk = 1'b0; // rx_clk falling edge always@(negedge rx_clk) if (rx_clk_en) #(T_clk_period / 2) rx_clk = 1'b1; // tx_clk rising edge always@(posedge tx_clk) if (tx_clk_en) #((T_clk_period + T_clk_delay) / 2) tx_clk = 1'b0; // tx_clk falling edge always@(negedge tx_clk) if (tx_clk_en) #((T_clk_period + T_clk_delay) / 2) tx_clk = 1'b1; // tx_clk_divided rising edge always@(posedge tx_clk_divided) if (tx_clk_divided_en) #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) tx_clk_divided = 1'b0; // tx_clk_divided falling edge always@(negedge tx_clk_divided) if (tx_clk_divided_en) #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) tx_clk_divided = 1'b1; // Inital CLK values initial begin:device rx_clk = 1'b0; tx_clk = 1'b0; tx_clk_divided = 1'b0; end// IN/OUT assignments//################### // UART output assign srx_o = (tx ^ tx_glitch) & ~tx_break; // Modem output assign cts_o = 0; assign dsr_o = 0; assign ri_o = 0; assign dcd_o = 0; // UART input assign rx = stx_i; // Modem input assign rts = rts_i; assign dtr = dtr_i;// UART receiver//############## // Initial values for RX initial begin // Default LENGTH rx_length = 8; // Default PARITY rx_odd_parity = 1'b0; rx_even_parity = 1'b0; rx_stick1_parity = 1'b0; rx_stick0_parity = 1'b0; rx_parity_enabled = 1'b0; // Default STOP rx_stop_bit_1 = 1'b1; rx_stop_bit_1_5 = 1'b0; rx_stop_bit_2 = 1'b0; end // Total length of RX packet (for proper generation of the rx_packet_end signal): // data length + parity + 1 stop bit + second stop bit (when enabled) assign rx_total_length = rx_length + rx_parity_enabled + 1 + rx_stop_bit_2; // +1 is used because start bit was not included in rx_total_length. assign rx_break_detection_length = rx_total_length + 1; // Generating rx_clk_cnt_en signal. always@(posedge rx_clk) begin if (~rx_clk_cnt_en) begin wait (~rx); end rx_clk_cnt_en = 1; rx_packet_end = 0; wait (rx_packet_end); rx_clk_cnt_en = 0; wait (rx); // Must be high to continue, because of break condition end // Counter used in data reception always@(posedge rx_clk) begin if (rx_clk_cnt_en) begin if (rx_clk_cnt == (8 * T_divisor - 1) & rx) // False start bit detection rx_packet_end = 1; if (rx_clk_cnt_en) // Checking is still enabled after devisor clocks rx_clk_cnt <= #1 rx_clk_cnt + 1; else rx_clk_cnt <= #1 0; end else rx_clk_cnt <= #1 0; end // Delayed rx_packet_end signal always@(posedge rx_clk) rx_packet_end_q = rx_packet_end; // Generating sample clock and end of the frame (Received data is sampled with this clock) always@(posedge rx_clk) begin if (rx_clk_cnt == 8 * T_divisor - 1) rx_bit_index = 0; else if (rx_clk_cnt == (8 * T_divisor + 16 * T_divisor * (rx_bit_index + 1) - 1)) begin rx_sample_clock = 1; rx_bit_index = rx_bit_index + 1; if (rx_bit_index == rx_total_length) rx_packet_end = 1; end else rx_sample_clock = 0; end // Sampling data (received data) always@(posedge rx_clk) begin if (rx_sample_clock) begin if (rx_bit_index <= rx_length) // Sampling data begin rx_stop_bit_index <= 0; // Stop bit index reset at the beginning of the data stage// $display("\t\t\t\t\t\t\t(rx_bit_index = %0d) Reading data bits = %0x", rx_bit_index, rx); rx_data[rx_bit_index - 1] = rx; if (rx_bit_index == rx_length) -> device_received_last_bit; end else
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -