📄 cout_bijiao.asv
字号:
clc
clear all
Nt = 2; % the number of transmitted antennas
Nr = 2; % the number of transmitted antennas
T=4; % the number of symbol periods
Tp=Nt;
Td=T-Tp;
%Td(1,length(T))=T-Tp*ones(1,length(T));
SNR = 30; % the system signal-to-noise ratio with dB
snr = 10.^(0.1*SNR); % the signal-to-noise with normal scale
snrp=snr;
cout=0:1:25; %outage capacity
MM=100; % 1000 channel
NN =100;% using 10000 Monte-Carlo runs
% Nr=Nt=2 rayleigh fading channel with perfect csi and without training symbol
pout_ray=zeros(1,length(cout)); % outage probability
nout_ray=zeros(1,length(cout));
%%%%% LMMSE estimator
%%%perfect csi
pouta_lmmse=zeros(1,length(cout)); % outage probability
nouta_lmmse=zeros(1,length(cout)); % the number of capa(jj)<cout
capa1_lmmse = zeros(1,MM); % perfect csi
A10_lmmse=zeros(Td*Nr,Td*Nr);
%%%%worst case noise lower bound
poutb_lmmse=zeros(1,length(cout)); % outage probability
noutb_lmmse=zeros(1,length(cout)); % the number of capa(jj)<cout
capa2_lmmse= zeros(1,MM); % worst case noise lower bound
%%%%inequality lower bound
poutc_lmmse=zeros(1,length(cout)); % outage probability
noutc_lmmse=zeros(1,length(cout)); % the number of capa(jj)<cout
capa3_lmmse = zeros(1,MM); % inequality lower bound
capa30_lmmse=zeros(1,MM);
capa300_lmmse=zeros(1,MM);
%%%%% ML estimator
%%%perfect csi
pouta_ml=zeros(1,length(cout)); % outage probability
nouta_ml=zeros(1,length(cout)); % the number of capa(jj)<cout
capa1_ml = zeros(1,MM); % perfect csi
%%%%worst case noise lower bound
poutb_ml=zeros(1,length(cout)); % outage probability
noutb_ml=zeros(1,length(cout)); % the number of capa(jj)<cout
capa2_ml= zeros(1,MM); % worst case noise lower bound
%%%%inequality lower bound
poutc_ml=zeros(1,length(cout)); % outage probability
noutc_ml=zeros(1,length(cout)); % the number of capa(jj)<cout
capa3_ml = zeros(1,MM); % inequality lower bound
capa30_ml=zeros(1,MM);
capa300_ml=zeros(1,MM);
tt = 0.5; % the correlation coefficients of transmitterwith exponential correlated , equal to zero when the channel is transmitted uncorrelated
% generating the correlated matrix at Tx
K =0.2; % Rician fading factor, and it will be qqual to zero when the channel is Rayleigh fading
for i =1:Nt
for j=1:Nt
Rt(i,j) = tt^(abs(i-j));
end
end
rr = 0.5; % the correlation coefficients of receiver with exponential correlated , equal to zero when the channel is received uncorrelated
% generating the correlated matrix at Rx
for i =1:Nr
for j=1:Nr
Rr(i,j) = rr^(abs(i-j));
end
end
% hm=zeros(Nt*Nr,1); % channel mean
hm=sqrt(K/(1+K))*ones(Nr*Nt,1);
hh=sqrt(1/(1+K))*kron(Rt.',Rr); % channel covariance
vv=eye(Tp*Nr);
capa_ray = zeros(1,length(MM)); % Nr=Nt=2 rayleigh fading channel with perfect csi and without training symbol
nn=eye(Td*Nr); % noise covariance
nn_ray=eye(T*Nr); % % Nr=Nt=2 rayleigh fading channel with perfect csi and without training symbol
A_ray=zeros(T*Nr,T*Nr);
A20_lmmse=zeros(Td*Nr,Td*Nr);
AA20_lmmse=zeros(Td*Nr,Td*Nr);
A20_ml=zeros(Td*Nr,Td*Nr);
AA20_ml=zeros(Td*Nr,Td*Nr);
A30=zeros(Td*Nr,Td*Nr);
AA30=zeros(Td*Nr,Td*Nr);
aa300=0;
p=eye(Tp*Nr); % training symbol
pp=inv(p'*p)*p'; % wei ni
nn=eye(Td*Nr); % noise covariance
%%%%% LMMSE estimator
F_lmmse=sqrt(snrp)*hh*p'*inv(snrp*p*hh*p'+vv);
f0_lmmse=(eye(size(F_lmmse*p))-sqrt(snrp)*F_lmmse*p)*hm;
% %%%ML estimator
F_ml=1/sqrt(snrp)*pp;
f0_ml=zeros(Nt*Nr,1);
for jj=1:MM
waitbar(jj/MM);
%%% % Nr=Nt=2 rayleigh fading channel with perfect csi and without training symbol
Hw_ray=sqrt(1/2)*(randn(Nr*Nt,1) + j*randn(Nr*Nt,1)); % channel
% %%% Rician Fading channel correlated
% Hw =sqrt(1/2)*(randn(Nr*Nt,1) + j*randn(Nr*Nt,1));
Hw = hh^(1/2)*Hw_ray;
Hw= hm + sqrt(1/(1+K))*Hw;
v=sqrt(1/2)*(randn(Nr*Tp,1) + j*randn(Nr*Tp,1)); % training noise
z=sqrt(snrp)*p*Hw+v; % received symbol
% %%%%%%LMMSE estimation
g_lmmse=F_lmmse*z+f0_lmmse;
B_lmmse=sqrt(snrp)*hh*p'*F_lmmse'*inv(F_lmmse*(snrp*p*hh*p'+vv)*F_lmmse');
C_lmmse=eye(size(B_lmmse*F_lmmse*p))-sqrt(snrp)*B_lmmse*F_lmmse*p;
d_lmmse=B_lmmse*g_lmmse+C_lmmse*hm-B_lmmse*f0_lmmse;
% %%%%%ML estimation
g_ml=F_ml*z+f0_ml;
B_ml=sqrt(snrp)*hh*p'*F_ml'*inv(F_ml*(snrp*p*hh*p'+vv)*F_ml');
C_ml=eye(size(B_ml*F_ml*p))-sqrt(snrp)*B_ml*F_ml*p;
d_ml=B_ml*g_ml+C_ml*hm-B_ml*f0_ml;
for kk =1:NN
X_ray =sqrt(1/(2*Nt))* (randn(Nt,T) + j* randn(Nt,T)); % rayleigh fading with perfect csi and without training symbol
XX_ray=kron(X_ray.',eye(Nr));
A_ray=A_ray+XX_ray*Hw_ray*Hw_ray'*XX_ray'; % rayleigh fading with perfect csi and without training symbol
X =sqrt(1/(2*Nt))* (randn(Nt,Td) + j* randn(Nt,Td));
XX=kron(X.',eye(Nr));
% %%%%%%LMMSE estimation
A10_lmmse=A10_lmmse+XX*Hw*Hw'*XX'; % perfect csi
A20_lmmse=A20_lmmse+XX*d_lmmse*d_lmmse'*XX'; % worst case noise lower bound
AA20_lmmse=AA20_lmmse+snrp*XX*C_lmmse*hh*XX'+nn;
A30_lmmse=A30_lmmse+XX*Hw*Hw'*XX'; % inequality lower bound
aa300_lmmse=aa300_lmmse+1/T*log2(det(eye(Nt*Nr)+snr*XX'*inv(nn)*XX*C_lmmse*hh));
% %%%%% ML estimation
A10_ml=A10_ml+XX*Hw*Hw'*XX'; % perfect csi
A20_ml=A20_ml+XX*d_ml*d_ml'*XX'; % worst case noise lower bound
AA20_ml=AA20_ml+snrp*XX*C_ml*hh*XX'+nn;
A30_ml=A30_ml+XX*Hw*Hw'*XX'; % inequality lower bound
aa300_ml=aa300_ml+1/T*log2(det(eye(Nt*Nr)+snr*XX'*inv(nn)*XX*C_ml*hh));
end
A_ray=1/NN*A_ray; %% Nr=Nt=2 rayleigh fading channel with perfect csi and without training symbol
capa_ray(jj)=1/T*log2(det(eye(T*Nr)+snr*A_ray*inv(nn_ray)));
for ii=1:length(cout)
if capa_ray(jj)<=cout(ii)
nout_ray(ii)=nout_ray(ii)+1
end
end
% %%%%%%LMMSE estimation
%%%% % perfect csi
A10_lmmse=1/NN*A10_lmmse;
capa1_lmmse(jj)=1/T*log2(det(eye(Td*Nr)+snr*A10_lmmse*inv(nn)));
for ii=1:length(cout)
if capa1_lmmse(jj)<=cout(ii)
nouta_lmmse(ii)=nouta_lmmse(ii)+1;
end
end
% %%%%%worst case noise lower bound
A20_lmmse=1/NN*A20_lmmse;
AA20_lmmse=1/NN*AA20_lmmse;
capa2_lmmse(jj)=1/T*log2(det(eye(Td*Nr)+snr*A20_lmmse*inv(AA20_lmmse)));
for ii=1:length(cout)
if capa2_lmmse(jj)<=cout(ii)
noutb_lmmse(ii)=noutb(ii)+1;
end
end
% %%%%inequality lower bound
A30_lmmse=1/NN*A30_lmmse;
capa30_lmmse(jj)=1/T*log2(det(eye(Td*Nr)+snr*A30_lmmse*inv(nn)));
aa300_lmmse=1/NN*aa300_lmmse;
capa300_lmmse(jj)=aa300_lmmse;
capa3_lmmse(jj)=capa30_lmmse(jj)-capa300_lmmse(jj);
for ii=1:length(cout)
if capa3_lmmse(jj)<=cout(ii)
noutc_lmmse(ii)=noutc(ii)+1;
end
end
% %%%%%%ML estimation
%%%% % perfect csi
A10_ml=1/NN*A10_ml;
capa1_ml(jj)=1/T*log2(det(eye(Td*Nr)+snr*A10_ml*inv(nn)));
for ii=1:length(cout)
if capa1_ml(jj)<=cout(ii)
nouta_ml(ii)=nouta_ml(ii)+1;
end
end
% %%%%%worst case noise lower bound
A20_ml=1/NN*A20_ml;
AA20_ml=1/NN*AA20_ml;
capa2_ml(jj)=1/T*log2(det(eye(Td*Nr)+snr*A20_ml*inv(AA20_ml)));
for ii=1:length(cout)
if capa2_ml(jj)<=cout(ii)
noutb_ml(ii)=noutb(ii)+1;
end
end
% %%%%inequality lower bound
A30_ml=1/NN*A30_ml;
capa30_ml(jj)=1/T*log2(det(eye(Td*Nr)+snr*A30_ml*inv(nn)));
aa300_ml=1/NN*aa300_ml;
capa300_ml(jj)=aa300_ml;
capa3_ml(jj)=capa30_ml(jj)-capa300_ml(jj);
for ii=1:length(cout)
if capa3_ml(jj)<=cout(ii)
noutc_ml(ii)=noutc(ii)+1;
end
end
end
pout_ray=1/MM*nout_ray;
% %%%%%%LMMSE estimation
pouta_lmmse=1/MM*nouta_lmmse;
poutb_lmmse=1/MM*noutb_lmmse;
poutc_lmmse=1/MM*noutc_lmmse;
% %%%%%%ML estimation
pouta_ml=1/MM*nouta_ml;
poutb_ml=1/MM*noutb_ml;
poutc_ml=1/MM*noutc_ml;
ww=waitbar(jj/MM);
close(ww)
% figure
plot(cout,pout_ray,'ko-')
hold on
% %%%%%%LMMSE estimation
plot(cout,pouta_lmmse,'ks-')
hold on
plot(cout,poutb_lmmse,'kv-')
hold on
plot(cout,poutc_lmmse,'k*-')
hold on
% %%%%%%ML estimation
plot(cout,pouta_ml,'bs-')
hold on
plot(cout,poutb_ml,'bv-')
hold on
plot(cout,poutc_ml,'b*-')
hold on
grid on
% title('outage probability of MIMO system's outage capacity')
xlabel('Cout [bit/channel use]')
ylabel('outage probability ')
% legend('Rayleigh 2x2','perfect csi','worst case','inequality')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -