📄 hyperg_1f1.c
字号:
result->err = exab.err * fabs(f); result->err += fabs(exab.val) * GSL_DBL_EPSILON * (1.0 + fabs(eps*x*x*v)); result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_e; } else { /* Otherwise use a Kummer transformation to reduce * it to the small a case. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_small_a_bgt0(-eps, b, -x, &Kummer_1F1); if(Kummer_1F1.val != 0.0) { int stat_e = gsl_sf_exp_mult_err_e(x, 2.0*GSL_DBL_EPSILON*fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { result->val = 0.0; result->err = 0.0; return stat_K; } }}/* 1F1(a,2a,x) = Gamma(a + 1/2) E(x) (|x|/4)^(-a+1/2) scaled_I(a-1/2,|x|/2) * * E(x) = exp(x) x > 0 * = 1 x < 0 * * a >= 1/2 */staticinthyperg_1F1_beq2a_pos(const double a, const double x, gsl_sf_result * result){ if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result I; int stat_I = gsl_sf_bessel_Inu_scaled_e(a-0.5, 0.5*fabs(x), &I); gsl_sf_result lg; int stat_g = gsl_sf_lngamma_e(a + 0.5, &lg); double ln_term = (0.5-a)*log(0.25*fabs(x)); double lnpre_val = lg.val + GSL_MAX_DBL(x,0.0) + ln_term; double lnpre_err = lg.err + GSL_DBL_EPSILON * (fabs(ln_term) + fabs(x)); int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, I.val, I.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_g, stat_I); }}/* Determine middle parts of diagonal recursion along b=2a * from two endpoints, i.e. * * given: M(a,b) and M(a+1,b+2) * get: M(a+1,b+1) and M(a,b+1) */#if 0inlinestaticinthyperg_1F1_diag_step(const double a, const double b, const double x, const double Mab, const double Map1bp2, double * Map1bp1, double * Mabp1){ if(a == b) { *Map1bp1 = Mab; *Mabp1 = Mab - x/(b+1.0) * Map1bp2; } else { *Map1bp1 = Mab - x * (a-b)/(b*(b+1.0)) * Map1bp2; *Mabp1 = (a * *Map1bp1 - b * Mab)/(a-b); } return GSL_SUCCESS;}#endif /* 0 *//* Determine endpoint of diagonal recursion. * * given: M(a,b) and M(a+1,b+2) * get: M(a+1,b) and M(a+1,b+1) */#if 0inlinestaticinthyperg_1F1_diag_end_step(const double a, const double b, const double x, const double Mab, const double Map1bp2, double * Map1b, double * Map1bp1){ *Map1bp1 = Mab - x * (a-b)/(b*(b+1.0)) * Map1bp2; *Map1b = Mab + x/b * *Map1bp1; return GSL_SUCCESS;}#endif /* 0 *//* Handle the case of a and b both positive integers. * Assumes a > 0 and b > 0. */staticinthyperg_1F1_ab_posint(const int a, const int b, const double x, gsl_sf_result * result){ double ax = fabs(x); if(a == b) { return gsl_sf_exp_e(x, result); /* 1F1(a,a,x) */ } else if(a == 1) { return gsl_sf_exprel_n_e(b-1, x, result); /* 1F1(1,b,x) */ } else if(b == a + 1) { gsl_sf_result K; int stat_K = gsl_sf_exprel_n_e(a, -x, &K); /* 1F1(1,1+a,-x) */ int stat_e = gsl_sf_exp_mult_err_e(x, 2.0 * GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if(a == b + 1) { gsl_sf_result ex; int stat_e = gsl_sf_exp_e(x, &ex); result->val = ex.val * (1.0 + x/b); result->err = ex.err * (1.0 + x/b); result->err += ex.val * GSL_DBL_EPSILON * (1.0 + fabs(x/b)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_e; } else if(a == b + 2) { gsl_sf_result ex; int stat_e = gsl_sf_exp_e(x, &ex); double poly = (1.0 + x/b*(2.0 + x/(b+1.0))); result->val = ex.val * poly; result->err = ex.err * fabs(poly); result->err += ex.val * GSL_DBL_EPSILON * (1.0 + fabs(x/b) * (2.0 + fabs(x/(b+1.0)))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_e; } else if(b == 2*a) { return hyperg_1F1_beq2a_pos(a, x, result); /* 1F1(a,2a,x) */ } else if( ( b < 10 && a < 10 && ax < 5.0 ) || ( b > a*ax ) || ( b > a && ax < 5.0 ) ) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if(b > a && b >= 2*a + x) { /* Use the Gautschi CF series, then * recurse backward to a=0 for normalization. * This will work for either sign of x. */ double rap; int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap); double ra = 1.0 + x/a * rap; double Ma = GSL_SQRT_DBL_MIN; double Map1 = ra * Ma; double Mnp1 = Map1; double Mn = Ma; double Mnm1; int n; for(n=a; n>0; n--) { Mnm1 = (n * Mnp1 - (2*n-b+x) * Mn) / (b-n); Mnp1 = Mn; Mn = Mnm1; } result->val = Ma/Mn; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + 1.0) * fabs(Ma/Mn); return stat_CF1; } else if(b > a && b < 2*a + x && b > x) { /* Use the Gautschi series representation of * the continued fraction. Then recurse forward * to the a=b line for normalization. This will * work for either sign of x, although we do need * to check for b > x, for when x is positive. */ double rap; int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap); double ra = 1.0 + x/a * rap; gsl_sf_result ex; int stat_ex; double Ma = GSL_SQRT_DBL_MIN; double Map1 = ra * Ma; double Mnm1 = Ma; double Mn = Map1; double Mnp1; int n; for(n=a+1; n<b; n++) { Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n; Mnm1 = Mn; Mn = Mnp1; } stat_ex = gsl_sf_exp_e(x, &ex); /* 1F1(b,b,x) */ result->val = ex.val * Ma/Mn; result->err = ex.err * fabs(Ma/Mn); result->err += 4.0 * GSL_DBL_EPSILON * (fabs(b-a)+1.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_ex, stat_CF1); } else if(x >= 0.0) { if(b < a) { /* The point b,b is below the b=2a+x line. * Forward recursion on a from b,b+1 is possible. * Note that a > b + 1 as well, since we already tried a = b + 1. */ if(x + log(fabs(x/b)) < GSL_LOG_DBL_MAX-2.0) { double ex = exp(x); int n; double Mnm1 = ex; /* 1F1(b,b,x) */ double Mn = ex * (1.0 + x/b); /* 1F1(b+1,b,x) */ double Mnp1; for(n=b+1; n<a; n++) { Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n; Mnm1 = Mn; Mn = Mnp1; } result->val = Mn; result->err = (x + 1.0) * GSL_DBL_EPSILON * fabs(Mn); result->err *= fabs(a-b)+1.0; return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } else { /* b > a * b < 2a + x * b <= x (otherwise we would have finished above) * * Gautschi anomalous convergence region. However, we can * recurse forward all the way from a=0,1 because we are * always underneath the b=2a+x line. */ gsl_sf_result r_Mn; double Mnm1 = 1.0; /* 1F1(0,b,x) */ double Mn; /* 1F1(1,b,x) */ double Mnp1; int n; gsl_sf_exprel_n_e(b-1, x, &r_Mn); Mn = r_Mn.val; for(n=1; n<a; n++) { Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n; Mnm1 = Mn; Mn = Mnp1; } result->val = Mn; result->err = fabs(Mn) * (1.0 + fabs(a)) * fabs(r_Mn.err / r_Mn.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mn); return GSL_SUCCESS; } } else { /* x < 0 * b < a (otherwise we would have tripped one of the above) */ if(a <= 0.5*(b-x) || a >= -x) { /* Gautschi continued fraction is in the anomalous region, * so we must find another way. We recurse down in b, * from the a=b line. */ double ex = exp(x); double Manp1 = ex; double Man = ex * (1.0 + x/(a-1.0)); double Manm1; int n; for(n=a-1; n>b; n--) { Manm1 = (-n*(1-n-x)*Man - x*(n-a)*Manp1)/(n*(n-1.0)); Manp1 = Man; Man = Manm1; } result->val = Man; result->err = (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(Man); result->err *= fabs(b-a)+1.0; return GSL_SUCCESS; } else { /* Pick a0 such that b ~= 2a0 + x, then * recurse down in b from a0,a0 to determine * the values near the line b=2a+x. Then recurse * forward on a from a0. */ int a0 = ceil(0.5*(b-x)); double Ma0b; /* M(a0,b) */ double Ma0bp1; /* M(a0,b+1) */ double Ma0p1b; /* M(a0+1,b) */ double Mnm1; double Mn; double Mnp1; int n; { double ex = exp(x); double Ma0np1 = ex; double Ma0n = ex * (1.0 + x/(a0-1.0)); double Ma0nm1; for(n=a0-1; n>b; n--) { Ma0nm1 = (-n*(1-n-x)*Ma0n - x*(n-a0)*Ma0np1)/(n*(n-1.0)); Ma0np1 = Ma0n; Ma0n = Ma0nm1; } Ma0bp1 = Ma0np1; Ma0b = Ma0n; Ma0p1b = (b*(a0+x)*Ma0b + x*(a0-b)*Ma0bp1)/(a0*b); } /* Initialise the recurrence correctly BJG */ if (a0 >= a) { Mn = Ma0b; } else if (a0 + 1>= a) { Mn = Ma0p1b; } else { Mnm1 = Ma0b; Mn = Ma0p1b; for(n=a0+1; n<a; n++) { Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n; Mnm1 = Mn; Mn = Mnp1; } } result->val = Mn; result->err = (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(Mn); result->err *= fabs(b-a)+1.0; return GSL_SUCCESS; } }}/* Evaluate a <= 0, a integer, cases directly. (Polynomial; Horner) * When the terms are all positive, this * must work. We will assume this here. */staticinthyperg_1F1_a_negint_poly(const int a, const double b, const double x, gsl_sf_result * result){ if(a == 0) { result->val = 1.0; result->err = 1.0; return GSL_SUCCESS; } else { int N = -a; double poly = 1.0; int k; for(k=N-1; k>=0; k--) { double t = (a+k)/(b+k) * (x/(k+1)); double r = t + 1.0/poly; if(r > 0.9*GSL_DBL_MAX/poly) { OVERFLOW_ERROR(result); } else { poly *= r; /* P_n = 1 + t_n P_{n-1} */ } } result->val = poly; result->err = 2.0 * (sqrt(N) + 1.0) * GSL_DBL_EPSILON * fabs(poly); return GSL_SUCCESS; }}/* Evaluate negative integer a case by relation * to Laguerre polynomials. This is more general than * the direct polynomial evaluation, but is safe * for all values of x. * * 1F1(-n,b,x) = n!/(b)_n Laguerre[n,b-1,x] * = n B(b,n) Laguerre[n,b-1,x] * * assumes b is not a negative integer */staticinthyperg_1F1_a_negint_lag(const int a, const double b, const double x, gsl_sf_result * result){ const int n = -a; gsl_sf_result lag; const int stat_l = gsl_sf_laguerre_n_e(n, b-1.0, x, &lag); if(b < 0.0) { gsl_sf_result lnfact; gsl_sf_result lng1; gsl_sf_result lng2; double s1, s2; const int stat_f = gsl_sf_lnfact_e(n, &lnfact); const int stat_g1 = gsl_sf_lngamma_sgn_e(b + n, &lng1, &s1); const int stat_g2 = gsl_sf_lngamma_sgn_e(b, &lng2, &s2); const double lnpre_val = lnfact.val - (lng1.val - lng2.val); const double lnpre_err = lnfact.err + lng1.err + lng2.err + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val); const int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -