📄 psi.c
字号:
result->err = GSL_DBL_EPSILON * (fabs(t1) + fabs(x/(t2*t2))); result->err += result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 1.0) { /* x = v */ const double t1 = 1.0/x; cheb_eval_e(&psi_cs, 2.0*x-1.0, &result_c); result->val = -t1 + result_c.val; result->err = GSL_DBL_EPSILON * t1; result->err += result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* x = 1 + v */ const double v = x - 1.0; return cheb_eval_e(&psi_cs, 2.0*v-1.0, result); } }}/* psi(z) for large |z| in the right half-plane; [Abramowitz + Stegun, 6.3.18] */staticgsl_complexpsi_complex_asymp(gsl_complex z){ /* coefficients in the asymptotic expansion for large z; * let w = z^(-2) and write the expression in the form * * ln(z) - 1/(2z) - 1/12 w (1 + c1 w + c2 w + c3 w + ... ) */ static const double c1 = -0.1; static const double c2 = 1.0/21.0; static const double c3 = -0.05; gsl_complex zi = gsl_complex_inverse(z); gsl_complex w = gsl_complex_mul(zi, zi); gsl_complex cs; /* Horner method evaluation of term in parentheses */ gsl_complex sum; sum = gsl_complex_mul_real(w, c3/c2); sum = gsl_complex_add_real(sum, 1.0); sum = gsl_complex_mul_real(sum, c2/c1); sum = gsl_complex_mul(sum, w); sum = gsl_complex_add_real(sum, 1.0); sum = gsl_complex_mul_real(sum, c1); sum = gsl_complex_mul(sum, w); sum = gsl_complex_add_real(sum, 1.0); /* correction added to log(z) */ cs = gsl_complex_mul(sum, w); cs = gsl_complex_mul_real(cs, -1.0/12.0); cs = gsl_complex_add(cs, gsl_complex_mul_real(zi, -0.5)); return gsl_complex_add(gsl_complex_log(z), cs);}/* psi(z) for complex z in the right half-plane */static intpsi_complex_rhp( gsl_complex z, gsl_sf_result * result_re, gsl_sf_result * result_im ){ int n_recurse = 0; int i; gsl_complex a; if(GSL_REAL(z) == 0.0 && GSL_IMAG(z) == 0.0) { result_re->val = 0.0; result_im->val = 0.0; result_re->err = 0.0; result_im->err = 0.0; return GSL_EDOM; } /* compute the number of recurrences to apply */ if(GSL_REAL(z) < 20.0 && fabs(GSL_IMAG(z)) < 20.0) { const double sp = sqrt(20.0 + GSL_IMAG(z)); const double sn = sqrt(20.0 - GSL_IMAG(z)); const double rhs = sp*sn - GSL_REAL(z); if(rhs > 0.0) n_recurse = ceil(rhs); } /* compute asymptotic at the large value z + n_recurse */ a = psi_complex_asymp(gsl_complex_add_real(z, n_recurse)); result_re->err = 2.0 * GSL_DBL_EPSILON * fabs(GSL_REAL(a)); result_im->err = 2.0 * GSL_DBL_EPSILON * fabs(GSL_IMAG(a)); /* descend recursively, if necessary */ for(i = n_recurse; i >= 1; --i) { gsl_complex zn = gsl_complex_add_real(z, i - 1.0); gsl_complex zn_inverse = gsl_complex_inverse(zn); a = gsl_complex_sub(a, zn_inverse); /* accumulate the error, to catch cancellations */ result_re->err += 2.0 * GSL_DBL_EPSILON * fabs(GSL_REAL(zn_inverse)); result_im->err += 2.0 * GSL_DBL_EPSILON * fabs(GSL_IMAG(zn_inverse)); } result_re->val = GSL_REAL(a); result_im->val = GSL_IMAG(a); result_re->err += 2.0 * GSL_DBL_EPSILON * fabs(result_re->val); result_im->err += 2.0 * GSL_DBL_EPSILON * fabs(result_im->val); return GSL_SUCCESS;}/* generic polygamma; assumes n >= 0 and x > 0 */static intpsi_n_xg0(const int n, const double x, gsl_sf_result * result){ if(n == 0) { return gsl_sf_psi_e(x, result); } else { /* Abramowitz + Stegun 6.4.10 */ gsl_sf_result ln_nf; gsl_sf_result hzeta; int stat_hz = gsl_sf_hzeta_e(n+1.0, x, &hzeta); int stat_nf = gsl_sf_lnfact_e((unsigned int) n, &ln_nf); int stat_e = gsl_sf_exp_mult_err_e(ln_nf.val, ln_nf.err, hzeta.val, hzeta.err, result); if(GSL_IS_EVEN(n)) result->val = -result->val; return GSL_ERROR_SELECT_3(stat_e, stat_nf, stat_hz); }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_psi_int_e(const int n, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(n <= 0) { DOMAIN_ERROR(result); } else if(n <= PSI_TABLE_NMAX) { result->val = psi_table[n]; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* Abramowitz+Stegun 6.3.18 */ const double c2 = -1.0/12.0; const double c3 = 1.0/120.0; const double c4 = -1.0/252.0; const double c5 = 1.0/240.0; const double ni2 = (1.0/n)*(1.0/n); const double ser = ni2 * (c2 + ni2 * (c3 + ni2 * (c4 + ni2*c5))); result->val = log(n) - 0.5/n + ser; result->err = GSL_DBL_EPSILON * (fabs(log(n)) + fabs(0.5/n) + fabs(ser)); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}int gsl_sf_psi_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ return psi_x(x, result);}intgsl_sf_psi_1piy_e(const double y, gsl_sf_result * result){ const double ay = fabs(y); /* CHECK_POINTER(result) */ if(ay > 1000.0) { /* [Abramowitz+Stegun, 6.3.19] */ const double yi2 = 1.0/(ay*ay); const double lny = log(ay); const double sum = yi2 * (1.0/12.0 + 1.0/120.0 * yi2 + 1.0/252.0 * yi2*yi2); result->val = lny + sum; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lny) + fabs(sum)); return GSL_SUCCESS; } else if(ay > 10.0) { /* [Abramowitz+Stegun, 6.3.19] */ const double yi2 = 1.0/(ay*ay); const double lny = log(ay); const double sum = yi2 * (1.0/12.0 + yi2 * (1.0/120.0 + yi2 * (1.0/252.0 + yi2 * (1.0/240.0 + yi2 * (1.0/132.0 + 691.0/32760.0 * yi2))))); result->val = lny + sum; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lny) + fabs(sum)); return GSL_SUCCESS; } else if(ay > 1.0){ const double y2 = ay*ay; const double x = (2.0*ay - 11.0)/9.0; const double v = y2*(1.0/(1.0+y2) + 0.5/(4.0+y2)); gsl_sf_result result_c; cheb_eval_e(&r1py_cs, x, &result_c); result->val = result_c.val - M_EULER + v; result->err = result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(v) + M_EULER + fabs(result_c.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->err *= 5.0; /* FIXME: losing a digit somewhere... maybe at x=... ? */ return GSL_SUCCESS; } else { /* [Abramowitz+Stegun, 6.3.17] * * -M_EULER + y^2 Sum[1/n 1/(n^2 + y^2), {n,1,M}] * + Sum[1/n^3, {n,M+1,Infinity}] * - y^2 Sum[1/n^5, {n,M+1,Infinity}] * + y^4 Sum[1/n^7, {n,M+1,Infinity}] * - y^6 Sum[1/n^9, {n,M+1,Infinity}] * + O(y^8) * * We take M=50 for at least 15 digit precision. */ const int M = 50; const double y2 = y*y; const double c0 = 0.00019603999466879846570; const double c2 = 3.8426659205114376860e-08; const double c4 = 1.0041592839497643554e-11; const double c6 = 2.9516743763500191289e-15; const double p = c0 + y2 *(-c2 + y2*(c4 - y2*c6)); double sum = 0.0; double v; int n; for(n=1; n<=M; n++) { sum += 1.0/(n * (n*n + y*y)); } v = y2 * (sum + p); result->val = -M_EULER + v; result->err = GSL_DBL_EPSILON * (M_EULER + fabs(v)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}int gsl_sf_psi_1_int_e(const int n, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(n <= 0) { DOMAIN_ERROR(result); } else if(n <= PSI_1_TABLE_NMAX) { result->val = psi_1_table[n]; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { /* Abramowitz+Stegun 6.4.12 * double-precision for n > 100 */ const double c0 = -1.0/30.0; const double c1 = 1.0/42.0; const double c2 = -1.0/30.0; const double ni2 = (1.0/n)*(1.0/n); const double ser = ni2*ni2 * (c0 + ni2*(c1 + c2*ni2)); result->val = (1.0 + 0.5/n + 1.0/(6.0*n*n) + ser) / n; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; }}int gsl_sf_psi_1_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x == 0.0 || x == -1.0 || x == -2.0) { DOMAIN_ERROR(result); } else if(x > 0.0) { return psi_n_xg0(1, x, result); } else if(x > -5.0) { /* Abramowitz + Stegun 6.4.6 */ int M = -floor(x); double fx = x + M; double sum = 0.0; int m; if(fx == 0.0) DOMAIN_ERROR(result); for(m = 0; m < M; ++m) sum += 1.0/((x+m)*(x+m)); { int stat_psi = psi_n_xg0(1, fx, result); result->val += sum; result->err += M * GSL_DBL_EPSILON * sum; return stat_psi; } } else { /* Abramowitz + Stegun 6.4.7 */ const double sin_px = sin(M_PI * x); const double d = M_PI*M_PI/(sin_px*sin_px); gsl_sf_result r; int stat_psi = psi_n_xg0(1, 1.0-x, &r); result->val = d - r.val; result->err = r.err + 2.0*GSL_DBL_EPSILON*d; return stat_psi; }}int gsl_sf_psi_n_e(const int n, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(n == 0) { return gsl_sf_psi_e(x, result); } else if(n == 1) { return gsl_sf_psi_1_e(x, result); } else if(n < 0 || x <= 0.0) { DOMAIN_ERROR(result); } else { gsl_sf_result ln_nf; gsl_sf_result hzeta; int stat_hz = gsl_sf_hzeta_e(n+1.0, x, &hzeta); int stat_nf = gsl_sf_lnfact_e((unsigned int) n, &ln_nf); int stat_e = gsl_sf_exp_mult_err_e(ln_nf.val, ln_nf.err, hzeta.val, hzeta.err, result); if(GSL_IS_EVEN(n)) result->val = -result->val; return GSL_ERROR_SELECT_3(stat_e, stat_nf, stat_hz); }}intgsl_sf_complex_psi_e( const double x, const double y, gsl_sf_result * result_re, gsl_sf_result * result_im ){ if(x >= 0.0) { gsl_complex z = gsl_complex_rect(x, y); return psi_complex_rhp(z, result_re, result_im); } else { /* reflection formula [Abramowitz+Stegun, 6.3.7] */ gsl_complex z = gsl_complex_rect(x, y); gsl_complex omz = gsl_complex_rect(1.0 - x, -y); gsl_complex zpi = gsl_complex_mul_real(z, M_PI); gsl_complex cotzpi = gsl_complex_cot(zpi); int ret_val = psi_complex_rhp(omz, result_re, result_im); if(GSL_IS_REAL(GSL_REAL(cotzpi)) && GSL_IS_REAL(GSL_IMAG(cotzpi))) { result_re->val -= M_PI * GSL_REAL(cotzpi); result_im->val -= M_PI * GSL_IMAG(cotzpi); return ret_val; } else { GSL_ERROR("singularity", GSL_EDOM); } }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_psi_int(const int n){ EVAL_RESULT(gsl_sf_psi_int_e(n, &result));}double gsl_sf_psi(const double x){ EVAL_RESULT(gsl_sf_psi_e(x, &result));}double gsl_sf_psi_1piy(const double x){ EVAL_RESULT(gsl_sf_psi_1piy_e(x, &result));}double gsl_sf_psi_1_int(const int n){ EVAL_RESULT(gsl_sf_psi_1_int_e(n, &result));}double gsl_sf_psi_1(const double x){ EVAL_RESULT(gsl_sf_psi_1_e(x, &result));}double gsl_sf_psi_n(const int n, const double x){ EVAL_RESULT(gsl_sf_psi_n_e(n, x, &result));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -