📄 francis.c
字号:
/* eigen/francis.c * * Copyright (C) 2006, 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <stdlib.h>#include <math.h>#include <gsl/gsl_eigen.h>#include <gsl/gsl_linalg.h>#include <gsl/gsl_math.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_vector_complex.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_cblas.h>#include <gsl/gsl_complex.h>#include <gsl/gsl_complex_math.h>/* * This module computes the eigenvalues of a real upper hessenberg * matrix, using the classical double shift Francis QR algorithm. * It will also optionally compute the full Schur form and matrix of * Schur vectors. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), * algorithm 7.5.2 *//* exceptional shift coefficients - these values are from LAPACK DLAHQR */#define GSL_FRANCIS_COEFF1 (0.75)#define GSL_FRANCIS_COEFF2 (-0.4375)static inline void francis_schur_decomp(gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w);static inline size_t francis_search_subdiag_small_elements(gsl_matrix * A);static inline int francis_qrstep(gsl_matrix * H, gsl_eigen_francis_workspace * w);static inline void francis_schur_standardize(gsl_matrix *A, gsl_complex *eval1, gsl_complex *eval2, gsl_eigen_francis_workspace *w);static inline size_t francis_get_submatrix(gsl_matrix *A, gsl_matrix *B);static void francis_standard_form(gsl_matrix *A, double *cs, double *sn);/*gsl_eigen_francis_alloc()Allocate a workspace for solving the nonsymmetric eigenvalue problem.The size of this workspace is O(1)Inputs: noneReturn: pointer to workspace*/gsl_eigen_francis_workspace *gsl_eigen_francis_alloc(void){ gsl_eigen_francis_workspace *w; w = (gsl_eigen_francis_workspace *) calloc (1, sizeof (gsl_eigen_francis_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } /* these are filled in later */ w->size = 0; w->max_iterations = 0; w->n_iter = 0; w->n_evals = 0; w->compute_t = 0; w->Z = NULL; w->H = NULL; return (w);} /* gsl_eigen_francis_alloc() *//*gsl_eigen_francis_free() Free francis workspace w*/voidgsl_eigen_francis_free (gsl_eigen_francis_workspace *w){ free(w);} /* gsl_eigen_francis_free() *//*gsl_eigen_francis_T() Called when we want to compute the Schur form T, or no longercompute the Schur form TInputs: compute_t - 1 to compute T, 0 to not compute T w - francis workspace*/voidgsl_eigen_francis_T (const int compute_t, gsl_eigen_francis_workspace *w){ w->compute_t = compute_t;}/*gsl_eigen_francis()Solve the nonsymmetric eigenvalue problemH x = \lambda xfor the eigenvalues \lambda using algorithm 7.5.2 ofGolub & Van Loan, "Matrix Computations" (3rd ed)Inputs: H - upper hessenberg matrix eval - where to store eigenvalues w - workspaceReturn: success or error - if error code is returned, then the QR procedure did not converge in the allowed number of iterations. In the event of non- convergence, the number of eigenvalues found will still be stored in the beginning of eval,Notes: On output, the diagonal of H contains 1-by-1 or 2-by-2 blocks containing the eigenvalues. If T is desired, H will contain the full Schur form on output.*/intgsl_eigen_francis (gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w){ /* check matrix and vector sizes */ if (H->size1 != H->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != H->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else { const size_t N = H->size1; int j; /* * Set internal parameters which depend on matrix size. * The Francis solver can be called with any size matrix * since the workspace does not depend on N. * Furthermore, multishift solvers which call the Francis * solver may need to call it with different sized matrices */ w->size = N; w->max_iterations = 30 * N; /* * save a pointer to original matrix since francis_schur_decomp * is recursive */ w->H = H; w->n_iter = 0; w->n_evals = 0; /* * zero out the first two subdiagonals (below the main subdiagonal) * needed as scratch space by the QR sweep routine */ for (j = 0; j < (int) N - 3; ++j) { gsl_matrix_set(H, (size_t) j + 2, (size_t) j, 0.0); gsl_matrix_set(H, (size_t) j + 3, (size_t) j, 0.0); } if (N > 2) gsl_matrix_set(H, N - 1, N - 3, 0.0); /* * compute Schur decomposition of H and store eigenvalues * into eval */ francis_schur_decomp(H, eval, w); if (w->n_evals != N) return GSL_EMAXITER; return GSL_SUCCESS; }} /* gsl_eigen_francis() *//*gsl_eigen_francis_Z()Solve the nonsymmetric eigenvalue problem for a HessenbergmatrixH x = \lambda xfor the eigenvalues \lambda using the Francis double-shiftmethod.Here we compute the real Schur formT = Q^t H Qwith the diagonal blocks of T giving us the eigenvalues.Q is the matrix of Schur vectors.Originally, H was obtained from a general nonsymmetric matrixA via a transformationH = U^t A Uso thatT = (UQ)^t A (UQ) = Z^t A ZZ is the matrix of Schur vectors computed by this algorithmInputs: H - upper hessenberg matrix eval - where to store eigenvalues Z - where to store Schur vectors w - workspaceNotes: 1) If T is computed, it is stored in H on output. Otherwise, the diagonal of H will contain 1-by-1 and 2-by-2 blocks containing the eigenvalues. 2) The matrix Z must be initialized to the Hessenberg similarity matrix U. Or if you want the eigenvalues of H, initialize Z to the identity matrix.*/intgsl_eigen_francis_Z (gsl_matrix * H, gsl_vector_complex * eval, gsl_matrix * Z, gsl_eigen_francis_workspace * w){ int s; /* set internal Z pointer so we know to accumulate transformations */ w->Z = Z; s = gsl_eigen_francis(H, eval, w); w->Z = NULL; return s;} /* gsl_eigen_francis_Z() *//******************************************** * INTERNAL ROUTINES * ********************************************//*francis_schur_decomp() Compute the Schur decomposition of the matrix HInputs: H - hessenberg matrix eval - where to store eigenvalues w - workspaceReturn: none*/static inline voidfrancis_schur_decomp(gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w){ gsl_matrix_view m; /* active matrix we are working on */ size_t N; /* size of matrix */ size_t q; /* index of small subdiagonal element */ gsl_complex lambda1, /* eigenvalues */ lambda2; N = H->size1; m = gsl_matrix_submatrix(H, 0, 0, N, N); while ((N > 2) && ((w->n_iter)++ < w->max_iterations)) { q = francis_search_subdiag_small_elements(&m.matrix); if (q == 0) { /* * no small subdiagonal element found - perform a QR * sweep on the active reduced hessenberg matrix */ francis_qrstep(&m.matrix, w); continue; } /* * a small subdiagonal element was found - one or two eigenvalues * have converged or the matrix has split into two smaller matrices */ if (q == (N - 1)) { /* * the last subdiagonal element of the matrix is 0 - * m_{NN} is a real eigenvalue */ GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, q, q), 0.0); gsl_vector_complex_set(eval, w->n_evals, lambda1); w->n_evals += 1; w->n_iter = 0; --N; m = gsl_matrix_submatrix(&m.matrix, 0, 0, N, N); } else if (q == (N - 2)) { gsl_matrix_view v; /* * The bottom right 2-by-2 block of m is an eigenvalue * system */ v = gsl_matrix_submatrix(&m.matrix, q, q, 2, 2); francis_schur_standardize(&v.matrix, &lambda1, &lambda2, w); gsl_vector_complex_set(eval, w->n_evals, lambda1); gsl_vector_complex_set(eval, w->n_evals + 1, lambda2); w->n_evals += 2; w->n_iter = 0; N -= 2; m = gsl_matrix_submatrix(&m.matrix, 0, 0, N, N); } else if (q == 1) { /* the first matrix element is an eigenvalue */ GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, 0, 0), 0.0); gsl_vector_complex_set(eval, w->n_evals, lambda1); w->n_evals += 1; w->n_iter = 0; --N; m = gsl_matrix_submatrix(&m.matrix, 1, 1, N, N); } else if (q == 2) { gsl_matrix_view v; /* the upper left 2-by-2 block is an eigenvalue system */ v = gsl_matrix_submatrix(&m.matrix, 0, 0, 2, 2); francis_schur_standardize(&v.matrix, &lambda1, &lambda2, w); gsl_vector_complex_set(eval, w->n_evals, lambda1); gsl_vector_complex_set(eval, w->n_evals + 1, lambda2); w->n_evals += 2; w->n_iter = 0; N -= 2; m = gsl_matrix_submatrix(&m.matrix, 2, 2, N, N); } else { gsl_matrix_view v; /* * There is a zero element on the subdiagonal somewhere * in the middle of the matrix - we can now operate * separately on the two submatrices split by this * element. q is the row index of the zero element. */ /* operate on lower right (N - q)-by-(N - q) block first */ v = gsl_matrix_submatrix(&m.matrix, q, q, N - q, N - q); francis_schur_decomp(&v.matrix, eval, w); /* operate on upper left q-by-q block */ v = gsl_matrix_submatrix(&m.matrix, 0, 0, q, q); francis_schur_decomp(&v.matrix, eval, w); N = 0; } } /* handle special cases of N = 1 or 2 */ if (N == 1) { GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, 0, 0), 0.0); gsl_vector_complex_set(eval, w->n_evals, lambda1); w->n_evals += 1; w->n_iter = 0; } else if (N == 2) { francis_schur_standardize(&m.matrix, &lambda1, &lambda2, w); gsl_vector_complex_set(eval, w->n_evals, lambda1); gsl_vector_complex_set(eval, w->n_evals + 1, lambda2); w->n_evals += 2; w->n_iter = 0; }} /* francis_schur_decomp() *//*francis_qrstep() Perform a Francis QR step.See Golub & Van Loan, "Matrix Computations" (3rd ed),algorithm 7.5.1Inputs: H - upper Hessenberg matrix w - workspaceNotes: The matrix H must be "reduced", ie: have no tiny subdiagonal elements. When computing the first householder reflection, we divide by H_{21} so it is necessary that this element is not zero. When a subdiagonal element becomes negligible, the calling function should call this routine with the submatrices split by that element, so that we don't divide by zeros.*/static inline intfrancis_qrstep(gsl_matrix * H, gsl_eigen_francis_workspace * w){ const size_t N = H->size1; size_t i; /* looping */ gsl_matrix_view m; double tau_i; /* householder coefficient */ double dat[3]; /* householder vector */ double scale; /* scale factor to avoid overflow */ gsl_vector_view v2, v3; size_t q, r; size_t top = 0; /* location of H in original matrix */ double s, disc; double h_nn, /* H(n,n) */ h_nm1nm1, /* H(n-1,n-1) */ h_cross, /* H(n,n-1) * H(n-1,n) */ h_tmp1, h_tmp2; v2 = gsl_vector_view_array(dat, 2); v3 = gsl_vector_view_array(dat, 3); if ((w->n_iter % 10) == 0) { /* * exceptional shifts: we have gone 10 iterations * without finding a new eigenvalue, try a new choice of shifts. * See LAPACK routine DLAHQR */ s = fabs(gsl_matrix_get(H, N - 1, N - 2)) + fabs(gsl_matrix_get(H, N - 2, N - 3)); h_nn = gsl_matrix_get(H, N - 1, N - 1) + GSL_FRANCIS_COEFF1 * s; h_nm1nm1 = h_nn; h_cross = GSL_FRANCIS_COEFF2 * s * s; } else { /* * normal shifts - compute Rayleigh quotient and use * Wilkinson shift if possible */ h_nn = gsl_matrix_get(H, N - 1, N - 1); h_nm1nm1 = gsl_matrix_get(H, N - 2, N - 2); h_cross = gsl_matrix_get(H, N - 1, N - 2) * gsl_matrix_get(H, N - 2, N - 1); disc = 0.5 * (h_nm1nm1 - h_nn); disc = disc * disc + h_cross; if (disc > 0.0) { double ave; /* real roots - use Wilkinson's shift twice */ disc = sqrt(disc); ave = 0.5 * (h_nm1nm1 + h_nn); if (fabs(h_nm1nm1) - fabs(h_nn) > 0.0) { h_nm1nm1 = h_nm1nm1 * h_nn - h_cross; h_nn = h_nm1nm1 / (disc * GSL_SIGN(ave) + ave); } else { h_nn = disc * GSL_SIGN(ave) + ave; } h_nm1nm1 = h_nn; h_cross = 0.0; } } h_tmp1 = h_nm1nm1 - gsl_matrix_get(H, 0, 0); h_tmp2 = h_nn - gsl_matrix_get(H, 0, 0); /* * These formulas are equivalent to those in Golub & Van Loan * for the normal shift case - the terms have been rearranged * to reduce possible roundoff error when subdiagonal elements * are small
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -