⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_srng.html

📁 最详尽的神经网络源码
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE html  PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"><html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>test_srng</title>      <meta name="generator" content="MATLAB 7.5">      <meta name="date" content="2009-03-04">      <meta name="m-file" content="test_srng"><style>body {  background-color: white;  margin:10px;}h1 {  color: #990000;   font-size: x-large;}h2 {  color: #990000;  font-size: medium;}/* Make the text shrink to fit narrow windows, but not stretch too far in wide windows. */ p,h1,h2,div.content div {  max-width: 600px;  /* Hack for IE6 */  width: auto !important; width: 600px;}pre.codeinput {  background: #EEEEEE;  padding: 10px;}@media print {  pre.codeinput {word-wrap:break-word; width:100%;}} span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.codeoutput {  color: #666666;  padding: 10px;}pre.error {  color: red;}p.footer {  text-align: right;  font-size: xx-small;  font-weight: lighter;  font-style: italic;  color: gray;}  </style></head>   <body>      <div class="content">         <h2>Contents</h2>         <div>            <ul>               <li><a href="#1">First example</a></li>               <li><a href="#2">Second example : Roc curve on ionosphere data</a></li>            </ul>         </div>         <h2>First example<a name="1"></a></h2><pre class="codeinput">clear, clc, close <span class="string">all</span> <span class="string">hidden</span>disp(<span class="string">'Running example 1 ....'</span>)d                                     = 2;Ntrain                                = 100;m                                     = 2;M0                                    = [0 ; 0];R0                                    = [1 0 ; 0 1];M1                                    = [2 ; 3];R1                                    = [0.5 0.1 ; 0.2 1];vect_test                             = (-4:0.1:8);options.epsilonk                      = 0.005;options.epsilonl                      = 0.001;options.epsilonlambda                 = 10e-8;options.sigmastart                    = 2;options.sigmaend                      = 10e-4;options.sigmastretch                  = 10e-3;options.threshold                     = 10e-10;options.xi                            = 0.1;options.nb_iterations                 = 5000;options.metric_method                 = 1;options.shuffle                       = 1;options.updatelambda                  = 1;Xtrain                                = [M0(: , ones(1 , Ntrain/2)) + chol(R0)'*randn(d , Ntrain/2) , M1(: , ones(1 , Ntrain/2)) + chol(R1)'*randn(d , Ntrain/2)];ytrain                                = [zeros(1 , Ntrain/2) , ones(1 , Ntrain/2)];[X , Y]                               = meshgrid(vect_test);Xtest                                 = [X(:)' ; Y(:)'];Nproto_pclass                         = 4*ones(1 , length(unique(ytrain)));[Wproto , yproto , lambda]            = ini_proto(Xtrain , ytrain , Nproto_pclass);[Wproto_est , yproto_est , lambda_est,  E_SRNG]    = srng_model(Xtrain , ytrain , Wproto , yproto , lambda , options);ytest_est                             = NN_predict(Xtest , Wproto_est , yproto_est,lambda_est,options);indtrain0                             = (ytrain == 0);indtrain1                             = (ytrain == 1);indproto0                             = (yproto_est == 0);indproto1                             = (yproto_est == 1);figure(1)imagesc(vect_test , vect_test , reshape(ytest_est , length(vect_test) , length(vect_test)) )axis <span class="string">ij</span>hold <span class="string">on</span>plot(Xtrain(1 , indtrain0) , Xtrain(2 , indtrain0) , <span class="string">'k+'</span> , Xtrain(1 , indtrain1) , Xtrain(2 , indtrain1) , <span class="string">'m+'</span> , Wproto_est(1 , indproto0) ,  Wproto_est(2 , indproto0) , <span class="string">'ko'</span> , Wproto_est(1 , indproto1) ,  Wproto_est(2 , indproto1) , <span class="string">'mo'</span>)h = voronoi(Wproto_est(1 , :) , Wproto_est(2 , :));set(h , <span class="string">'color'</span> , <span class="string">'y'</span> , <span class="string">'linewidth'</span> , 2)hold <span class="string">off</span>title(<span class="string">'E_{SRNG}(t)'</span> , <span class="string">'fontsize'</span> , 12)colorbarfigure(2)plot(E_SRNG);title(<span class="string">'E_{SRNG}(t)'</span> , <span class="string">'fontsize'</span> , 12)figure(3)stem(lambda_est);title(<span class="string">'\lambda'</span> , <span class="string">'fontsize'</span> , 12)pause</pre><pre class="codeoutput">Running example 1 ....</pre><img vspace="5" hspace="5" src="test_srng_01.png"> <img vspace="5" hspace="5" src="test_srng_02.png"> <img vspace="5" hspace="5" src="test_srng_03.png"> <h2>Second example : Roc curve on ionosphere data<a name="2"></a></h2><pre class="codeinput">disp(<span class="string">'Running example 2 ....'</span>)clear, close <span class="string">all</span> <span class="string">hidden</span>load <span class="string">ionosphere</span>Nproto_pclass                      = 4*ones(1 , length(unique(y)));options.epsilonk                   = 0.005;options.epsilonl                   = 0.001;options.epsilonlambda              = 10e-8;options.sigmastart                 = 2;options.sigmaend                   = 10e-4;options.sigmastretch               = 10e-3;options.threshold                  = 10e-10;options.xi                         = 2;options.nb_iterations              = 5000;options.metric_method              = 1;options.shuffle                    = 1;options.updatelambda               = 1;options.method                     = 7;options.holding.rho                = 0.7;options.holding.K                  = 20;X                                  = normalize(X);[Itrain , Itest]                   = sampling(X , y , options);Perftrain                          = zeros(1 , size(Itrain , 1));Perftest                           = zeros(1 , size(Itrain , 1));tptrain                            = zeros(size(Itrain , 1) , 100);fptrain                            = zeros(size(Itrain , 1) , 100);tptest                             = zeros(size(Itrain , 1) , 100);fptest                             = zeros(size(Itrain , 1) , 100);<span class="keyword">for</span> i = 1 : size(Itrain , 1)    [Xtrain , ytrain , Xtest , ytest]  = samplingset(X , y , Itrain , Itest , i);    [Wproto , yproto , lambda]         = ini_proto(Xtrain , ytrain , Nproto_pclass);    [Wproto_est , yproto_est , lambda_est,  E_SRNG]    = srng_model(Xtrain , ytrain , Wproto , yproto , lambda, options);    [ytest_est , disttest]             = NN_predict(Xtest , Wproto_est , yproto_est , lambda_est , options);    [ytrain_est , disttrain]           = NN_predict(Xtrain , Wproto_est , yproto_est , lambda_est , options);    Perftrain(i)                       = perf_classif(ytrain , ytrain_est);    Perftest(i)                        = perf_classif(ytest , ytest_est);    dktrain                            = min(disttrain(yproto==0 , :));    dltrain                            = min(disttrain(yproto~=0 , :));    nutrain                            = (dktrain - dltrain)./(dktrain + dltrain);    [tptrain(i , :) , fptrain(i , :)]  = basicroc(ytrain , nutrain);    dktest                             = min(disttest(yproto==0 , :));    dltest                             = min(disttest(yproto~=0 , :));    nutest                             = (dktest - dltest)./(dktest + dltest);    [tptest(i , :) , fptest(i , :)]    = basicroc(ytest , nutest);    disp(sprintf(<span class="string">'%d/%d'</span> , i , options.holding.K))    drawnow

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -