📄 ipca.m
字号:
function Model=ipca(X,no_of_lv,prepro_method,intervals,xaxislabels)
% ipca calculates the interval models based on PCA
%
% Input:
% X is the independent variables
% no_of_lv is the maximum number of PCA or PLS components
% prepro_method (for X only) is 'mean', 'auto', 'mscmean', 'mscauto' or 'none'
% Note: msc is performed with a basis in each interval
% intervals is the number of intervals
% if intervals is a row vector divisions are made based on the elements
% [startint1 endint1 startint2 endint2 startint3 endint3], see an example in manint
% xaxislabels (self explainable), if not available type []
%
% NOTE: No validation is performed for iPCA models
%
% Output:
% Model is a structured array containing all model information
%
% Copyright, Chemometrics Group - KVL, Copenhagen, Denmark
% Lars N鴕gaard, July 2004
%
% Model=ipca(X,no_of_lv,prepro_method,intervals,xaxislabels);
% Function used: sub_pca
if nargin==0
disp(' ')
disp(' Model=ipca(X,no_of_lv,prepro_method,intervals,xaxislabels);')
disp(' ')
disp(' Example:')
disp(' Model=ipca(X,7,''mean'',20,xaxis);')
disp(' ')
return
end
% Error checks
if ~ismember(prepro_method,{'mean', 'auto', 'mscmean', 'mscauto', 'none'})
disp(' Not allowed preprocessing method')
Model=[];
return
end
% End error checks
Model.type='iPCA';
Model.rawX=X;
Model.rawY=[];
Model.no_of_lv=no_of_lv;
Model.prepro_method=prepro_method;
Model.xaxislabels=xaxislabels;
Model.val_method='none';
Model.segments=[];
[n,m]=size(X);
[nint,mint]=size(intervals);
if mint > 1
Model.allint=[(1:round(mint/2)+1)' [intervals(1:2:mint)';1] [intervals(2:2:mint)';m]];
Model.intervals=round(mint/2);
Model.intervalsequi=0;
else
Model.intervals=intervals;
vars_left_over=mod(m,intervals);
N=fix(m/intervals);
% Distributes vars_left_over in the first "vars_left_over" intervals
startint=[(1:(N+1):(vars_left_over-1)*(N+1)+1)'; ((vars_left_over-1)*(N+1)+1+1+N:N:m)'];
endint=[startint(2:intervals)-1; m];
Model.allint=[(1:intervals+1)' [startint;1] [endint;m]];
Model.intervalsequi=1;
end
% Local calibration
for i=1:size(Model.allint,1)
if i<size(Model.allint,1)
home, s = sprintf('Working on interval no. %g of %g...',i,size(Model.allint,1)-1); disp(s)
else
home, disp('Working on full spectrum model...')
end
Model.PCAmodel{i}=sub_pca(X(:,[Model.allint(i,2):Model.allint(i,3)]),no_of_lv,prepro_method);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -