📄 bipls.m
字号:
function biModel=bipls(X,Y,no_of_lv,prepro_method,intervals,xaxislabels,val_method,segments)
% bipls: backwards elimination of non-informative intervals the Leardi way...
%
% Input:
% X is the independent variables
% Y is the dependent variable(s), NOTE: Y is allways autoscaled
% no_of_lv is the maximum number of PLS components
% prepro_method (for X only) is 'mean', 'auto', 'mscmean' or 'mscauto'
% Note: msc is performed in each interval
% intervals is the number of intervals
% if intervals is a row vector divisions are made based on the elements
% [startint1 endint1 startint2 endint2 startint3 endint3], see an example in manint
% xaxislabels (self explainable), if not available type []
% val_method is 'test', 'full', 'syst111', 'syst123', 'random', or
% 'manual'; the last five are cross validation based methods
% segments (segments = number of samples corresponds to full cv)
% if intervals is a cell array cross validation is performed according
% to this array, see the script makeManualSegments
%
% Output:
% biModel is a structured array containing all model information
%
% Copyright, Chemometrics Group - KVL, Copenhagen, Denmark
% Lars N鴕gaard, July 2004
%
% biModel=bipls(X,Y,no_of_lv,prepro_method,intervals,xaxislabels,val_method,segments);
% Functions used: iPLSreverse
if nargin==0
disp(' ')
disp(' biModel=bipls(X,Y,no_of_lv,prepro_method,intervals,xaxislabels,val_method,segments);')
disp(' ')
disp(' Example:')
disp(' biModel=bipls(X,Y,10,''mean'',20,[],''syst123'',5);')
disp(' ')
return
end
% Error checks
if ~ismember(val_method,{'test', 'full', 'syst123', 'syst111', 'random', 'manual'})
disp(' Not allowed validation method')
biModel=[];
return
end
if ~ismember(prepro_method,{'mean', 'auto', 'mscmean', 'mscauto', 'none'})
disp(' Not allowed preprocessing method')
biModel=[];
return
end
% End error checks
if strcmp(val_method,'full')
segments=size(X,1);
end
ModelReverse=sub_iPLSreverse(X,Y,no_of_lv,prepro_method,intervals,xaxislabels,val_method,segments);
[temp1,temp2,minRMSEwithout(1),ix_for_iterative(1),minRMSEglobal(1)]=sort_ipls(ModelReverse); % Subfunction of this file
newX=X;
RevVars(1)=size(newX,2);
newX(:,ModelReverse.allint(ix_for_iterative(1),2):ModelReverse.allint(ix_for_iterative(1),3))=[];
keeptrackofinterval=[(1:intervals)' (1:intervals)'];
RevIntInfo(1,:)=keeptrackofinterval(ix_for_iterative(1),:);
keeptrackofinterval(ix_for_iterative(1),:)=[];
keeptrackofinterval(:,1)=(1:(intervals-1))';
%IntervalInformation=[(1:intervals)' ModelReverse.allint(1:intervals,:)];
for i=2:(intervals-1)
%plot(newX'),pause
RevVars(i)=size(newX,2);
ModelReverse=sub_iPLSreverse(newX,Y,no_of_lv,prepro_method,intervals-(i-1),xaxislabels,val_method,segments);
[temp1,temp2,minRMSEwithout(i),ix_for_iterative(i),minRMSEglobal(i)]=sort_ipls(ModelReverse); % Subfunction of this file
newX(:,ModelReverse.allint(ix_for_iterative(i),2):ModelReverse.allint(ix_for_iterative(i),3))=[];
RevIntInfo(i,:)=keeptrackofinterval(ix_for_iterative(i),:);
keeptrackofinterval(ix_for_iterative(i),:)=[];
keeptrackofinterval(:,1)=(1:(intervals-i))';
% IntervalInformation(ix_for_iterative,:)=[];
% IntervalInformation(:,1)=(1:(intervals-(i-1)))';
end
l=length(minRMSEwithout);
RevRMSE=[minRMSEglobal'; minRMSEwithout(l)];
RevIntInfo(:,1)=[];
RevIntInfo(intervals)=keeptrackofinterval(1,2);
RevVars=[RevVars';size(newX,2)];
% For subsequent use in plsmodel
[n,m]=size(X);
[nint,mint]=size(intervals);
if mint > 1
allint=[(1:round(mint/2)+1)' [intervals(1:2:mint)';1] [intervals(2:2:mint)';m]];
intervals=round(mint/2);
intervalsequi=0;
else
vars_left_over=mod(m,intervals);
N=fix(m/intervals);
% Distributes vars_left_over in the first "vars_left_over" intervals
startint=[(1:(N+1):(vars_left_over-1)*(N+1)+1)'; ((vars_left_over-1)*(N+1)+1+1+N:N:m)'];
endint=[startint(2:intervals)-1; m];
allint=[(1:intervals+1)' [startint;1] [endint;m]];
intervalsequi=1;
end
biModel.type='biPLS';
biModel.rawX=X;
biModel.rawY=Y;
biModel.no_of_lv=no_of_lv;
biModel.prepro_method=prepro_method;
biModel.intervals=intervals;
biModel.allint=allint;
biModel.intervalsequi=intervalsequi;
biModel.xaxislabels=xaxislabels;
biModel.val_method=val_method;
biModel.segments=segments;
biModel.RevIntInfo=RevIntInfo;
biModel.RevRMSE=RevRMSE;
biModel.RevVars=RevVars;
% function vec=findvec(IntervalInformation)
% vec=[];
% for i=1:(IntervalInformation)
% vec=[vec [IntervalInformation(i,2) IntervalInformation(i,3)]];
% end
% end
function [RMSEsorted,ix_sorted,RMSEmin,ix_for_iterative,minRMSEglobal]=sort_ipls(Model)
% Sorts intervals from iplsreverse according to predictive ability.
% Input: Model (output from iplsreverse)
% Output:
% RMSEsorted: the first minimum RMSE value for each interval, sorted according to size
% ix_sorted: interval number, sorted according to first minimum RMSE
AllRMSE=[];
for i=1:Model.intervals
AllRMSE=[AllRMSE; Model.PLSmodel{i}.RMSE];
end
RedRMSE=AllRMSE(:,2:end); % PLSC0 is excluded in finding the first local minimum
SignMat=[sign(diff(RedRMSE')') ones(Model.intervals,1)];
for i=1:size(RedRMSE,1)
for j=1:size(RedRMSE,2)
if SignMat(i,j)==1
% minRMSEcomp(i)=j; % To estimate number of components in final models NOT IMPLEMENTED
minRMSEinInterval(i)=RedRMSE(i,j);
break
end
end
end
minRMSEinInterval=minRMSEinInterval'; % Important for flipud function three lines later
[RMSEsorted,ix_sorted]=sort(minRMSEinInterval);
RMSEsorted=flipud(RMSEsorted);
ix_sorted=flipud(ix_sorted);
l=length(ix_sorted);
ix_for_iterative=ix_sorted(l);
RMSEmin=RMSEsorted(l);
RedRMSEglobal=Model.PLSmodel{Model.intervals+1}.RMSE(2:end); % PLSC0 is excluded in finding the first local minimum
SignMat=[sign(diff(RedRMSEglobal')') 1];
for j=1:size(RedRMSEglobal,2)
if SignMat(j)==1
minRMSEglobal=RedRMSEglobal(j);
break
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -