📄 gapls.m
字号:
% Application of GA to the selection of the "best" subset
% for a PLS regression.
%
% by R. Leardi
%
% Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari
% via Brigata Salerno (ponte) - 16147 GENOVA (ITALY)
% e-mail: riclea@dictfa.unige.it
%
% The syntax is: [b,fin,sel]=gapls(dataset,evaluat)
% where b=vector of the variables in decreasing order of selection
% fin=matrix with the results of the final stepwise:
% row 1 = # of variables used
% row 2 = response (% C. V.)
% row 3 = # of components
% row 4 = RMSECV
% sel=vector with the frequency of selection
%
% The y variable is the last one
%
% This version has no interactive input, and therefore repeated series
% of runs can be performed.
% 2 input parameters have to be specified:
% 1) data set
% 2) number of evaluations per run
function [b,fin,sel]=gapls(dataset,evaluat)
clc
format compact
randomiz
[o,c]=size(dataset);
disp(['objects: ' int2str(o)])
y=dataset(:,c);
v=c-1;
disp(['variables: ' int2str(v)]);
s1=[];s2=[];b=[];fin=[];sel=[];
aut=2; % autoscaling; 0=raw data; 1=column centering
ng=5; % 5 deletion groups
cr=30; % 30 chromosomes
probsel=5/v; % on average 5 variables per chromosome in the orig. pop.
maxvar=30; % 30 variables as a maximum
probmut=0.01; % probability of mutation 1%
probcross=0.5; % probability of cross-over 50%
freqb=100; % backward stepwise every 100 evaluations
if floor(evaluat/100)==evaluat/100;
endb='N';
else
endb='Y';
end
runs=100; % 100 runs
el=3;
% computation of CV var. with all the variables
% (the optimal number of components will be the maximum for GA)
[maxcomp,start,mxi,sxi,myi,syi]=plsgacv(dataset(:,1:v),y,aut,ng,15);
disp(' ')
disp(['With all the variables:'])
disp(['components: ' int2str(maxcomp)])
disp(['C.V. variance: ' num2str(start)])
sel=zeros(1,v); % sel stores the frequency of selection
for r=1:runs
sel=[sel 0];
disp(' ')
disp(['run ' num2str(r)])
% creation and evaluation of the starting population
crom=zeros(cr,v);
resp=zeros(cr,1);
comp=zeros(cr,1);
p=zeros(2,v);
numvar=zeros(cr,1); %%% numvar stores the number of variables in each chr.
lib=[]; %%% lib is the matrix with all the already tested chromosomes %%%
libb=[];%%% libb is the matrix with all the already backw. chromosomes %%%
nextb=freqb;
cc=0;
while cc<cr
den=0;
sumvar=0;
while (sumvar==0 | sumvar>maxvar)
a=rand(1,v);
for j=1:v
if a(1,j)<probsel
a(1,j)=1;
else
a(1,j)=0;
end
end
sumvar=sum(a);
end
den=checktw(cc,lib,a);
if den==0
lib=[lib;a];
if cc>0
[s1,s2]=chksubs(cc,crom(1:cc,:),a);
end
cc=cc+1;
var=find(a);
[fac,risp]=plsgacv(dataset(:,var),y,aut,ng,maxcomp,mxi(:,var),sxi(:,var),myi,syi);
if isempty(s2)
mm=0;
else
mm=max(resp(s2));
end
if risp>mm % the new chrom. survives only if better
crom(cc,:)=a;
resp(cc,1)=risp;
comp(cc,1)=fac;
numvar(cc,1)=size(var,2);
for kk=1:size(s1,2)
if risp>=resp(s1(kk))
resp(s1(kk))=0; % the old chrom. are killed if worse
end
end
end
end
end
[vv,pp]=sort(resp);
pp=flipud(pp);
crom=crom(pp,:);
resp=resp(pp,:);
comp=comp(pp,:);
numvar=numvar(pp,:);
disp(' ')
disp(['After the creation of the original population: ' num2str(resp(1))])
maxrisp=resp(1);
while cc<evaluat
% selection of 2 chromosomes
cumrisp=cumsum(resp);
if resp(2)==0
rr=randperm(cr);
p(1,:)=crom(rr(1),:);
if resp(1)==0
p(2,:)=crom(rr(2),:);
else
p(2,:)=crom(1,:);
end
else
k=rand*cumrisp(cr);
j=1;
while k>cumrisp(j)
j=j+1;
end
p(1,:)=crom(j,:);
p(2,:)=p(1,:);
while p(2,:)==p(1,:)
k=rand*cumrisp(cr);
j=1;
while k>cumrisp(j)
j=j+1;
end
p(2,:)=crom(j,:);
end
end
% cross-over between the 2 chromosomes
s=p;
diff=find(p(1,:)~=p(2,:));
randmat=rand(1,size(diff,2));
cro=find(randmat<probcross);
s(1,diff(cro))=p(2,diff(cro));
s(2,diff(cro))=p(1,diff(cro));
% mutations
m=rand(2,v);
for i=1:2
f=find((m(i,:))<probmut);
bb=size(f,2);
for j=1:bb
if s(i,f(j))==0
s(i,f(j))=1;
else
s(i,f(j))=0;
end
end
end
% evaluation of the offspring
for i=1:2
den=0;
var=find(s(i,:));
sumvar=sum(s(i,:));
if sumvar==0 | sumvar>maxvar
den=1;
end
if den==0
den=checktw(cc,lib,s(i,:));
end
if den==0
cc=cc+1;
[fac,risp]=plsgacv(dataset(:,var),y,aut,ng,maxcomp,mxi(:,var),sxi(:,var),myi,syi);
lib=[s(i,:);lib];
if risp>maxrisp
disp(['ev. ' int2str(cc) ' - ' num2str(risp)])
maxrisp=risp;
end
if risp>resp(cr)
[crom,resp,comp,numvar]=update(cr,crom,s(i,:),resp,comp,numvar,risp,fac,var);
end
end
end
% stepwise
if cc>=nextb
nextb=nextb+freqb;
[nc,rispmax,compmax,cc,maxrisp,libb]=backw(r,cr,crom,resp,numvar,cc,dataset,y,aut,ng,maxcomp,maxrisp,libb,mxi,sxi,myi,syi,el);
if isempty(nc)~=1
[crom,resp,comp,numvar]=update(cr,crom,nc,resp,comp,numvar,rispmax,compmax,find(nc));
end
end
end
if endb=='Y' % final stepwise
[nc,rispmax,compmax,cc,maxrisp,libb]=backw(r,cr,crom,resp,numvar,cc,dataset,y,aut,ng,maxcomp,maxrisp,libb,mxi,sxi,myi,syi,el);
if isempty(nc)~=1
[crom,resp,comp,numvar]=update(cr,crom,nc,resp,comp,numvar,rispmax,compmax,find(nc));
end
end
sel=sel(1:v)+crom(1,:);
disp(find(crom(1,:)))
figure(1)
bar(sel);
set(gca,'XLim',[0 v])
title(['Frequency of selections after ' int2str(r) ' runs']);
drawnow
end
disp('Stepwise according to the frequency of selection');
[a,b]=sort(-sel);
sel=-a;
fin=[];
k=v-1;
if v-1>200
k=200;
end
for c=1:k
if sel(c)>sel(c+1)
[fac,risp]=plsgacv(dataset(:,b(1:c)),y,aut,ng,maxcomp,mxi(:,b(1:c)),sxi(:,b(1:c)),myi,syi);
sep=sqrt(1-risp/100)*syi(ng+1);sep=sep-sep/(2*o-2); %formula "approssimata" per calcolare sep da % var. sp.
fin=[fin [c;risp;fac;sep]];
disp(' ')
disp(['With ' int2str(c) ' var. ' num2str(risp) ' (' int2str(fac) ' comp.)'])
end
end
figure(2)
plot(fin(1,:),fin(2,:))
title(['C.V. as a function of the number of selected variables']);
figure(gcf)
disp(' ')
[x,k]=max(fin(2,:));
disp(['Maximum C.V.: ' num2str(x) ' obtained with ' int2str(fin(1,k)) ' variables (' int2str(fin(3,k)) ' comp.):']);
disp(b(1:fin(1,k)))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -