📄 gfconv.c
字号:
/*============================================================================= * Syntax: c = gfconv(a, b, p) * GFCONV GF(P) polynomial convolution or GF(P^M) element multiplication. * C = GFCONV(A, B) computes the convolution between two GF(2) * polynomials A and B. The polynomial degree of the resulted GF(2) * polynomial C equals degree(A) + degree(B). * * C = GFADD(A, B, P) computes the convolution between two GF(P) * polynomials when P is a scalar prime number. * When P is a matrix that contains the tuple of all elements in GF(Q^M), * this function takes A and B as indices (power number of the * exponential form) of GF(Q^M) elements. The output C is * alpha^C = alpha^A * alpha^B in GF(Q^M). The computation is * element-by-element computation. You can generate the tuple of all * elements in GF(Q^M) by P = GFTUPLE([-1:Q^M-2]', M, Q). * * In polynomial computation, A, B, and C are ascending ordered, i.e., * A = [a_0, a_1, a_2,..., a_(n-1), a_n] represents * A(X) = a_0 + a_1 X + a_2 X^2 +...+ a_(n-1) X^(n-1) + a_n X^n * a_i must be a element in GF(P). * * In power representation form, [-Inf, 0, 1, 2, ...] represents * [0, 1, alpha, alpha^2, ...] in GF(p^m). * * See also GFADD, GFDIV, GFTUPLE * *============================================================================= * Original designed by Wes Wang, * Jun Wu, The Mathworks, Inc. * Dec-12, 1995 * * Copyright (c) 1995-96 by The MAthWorks, Inc. * All Rights Reserved * $Revision: 1.1 $ $Date: 1996/04/01 18:14:08 $ *=========================================================================== */#include <math.h>#include "mex.h"#include "gflib.c"void mexFunction(int nlhs, Matrix *plhs[], int nrhs, Matrix *prhs[]){ int ma, na, mb, nb, nc, np, mp, len_a, len_b, len_p, i; int *paa, *pbb, *pp, *pcc, *Iwork1, *Iwork2; double *pa, *pb, *p, *pc; if ( nrhs < 2 ){ mexErrMsgTxt("Not enough input for GFCONV!"); }else if ( nrhs == 2 ){ len_p = 1; }else if ( nrhs > 2 ){ p = mxGetPr(prhs[2]); np= mxGetM(prhs[2]); mp= mxGetN(prhs[2]); len_p = np*mp; } /* get input arguments */ pa = mxGetPr(prhs[0]); pb = mxGetPr(prhs[1]); ma = mxGetM(prhs[0]); na = mxGetN(prhs[0]); mb = mxGetM(prhs[1]); nb = mxGetN(prhs[1]); len_a = ma*na; len_b = mb*nb; /* variable type conversion for calling functions in gflib.c */ paa = (int *)mxCalloc(len_a, sizeof(int)); pbb = (int *)mxCalloc(len_b, sizeof(int)); pp = (int *)mxCalloc(len_p, sizeof(int)); for (i=0; i < len_a; i++) paa[i] = (int) pa[i]; for (i=0; i < len_b; i++) pbb[i] = (int) pb[i]; if( nrhs == 2 ){ pp[0] = 2; }else{ for (i=0; i < len_p; i++) pp[i] = (int) p[i]; } /* truncate input */ Iwork1 = (int *)mxCalloc(len_a+len_b, sizeof(int)); gftrunc(paa,&len_a,len_p,Iwork1); gftrunc(pbb,&len_b,len_p,Iwork1+len_a); /* computation */ if (len_p <= 1){ /* case of polynomial calculation */ /* input check up */ for (i=0; i < len_a; i++){ if (pa[i] < 0 || pa[i] != floor(pa[i]) || pa[i] >= pp[0] ) mexErrMsgTxt("The polynomial coeficients must be in GF(P)"); } for (i=0; i < len_b; i++){ if (pb[i] < 0 || pb[i] != floor(pb[i]) || pb[i] >= pp[0]) mexErrMsgTxt("The polynomial coeficients must be in GF(P)"); } /* call gfconv() in gflib.c */ nc = len_a+len_b-1; pcc = (int *)mxCalloc(nc, sizeof(int)); Iwork2 = (int *)mxCalloc(6*nc+2, sizeof(int)); gfconv(paa, len_a, pbb, len_b, *pp, pcc, Iwork2); } else { /* computation in GF(p^m) field */ /* call gfpconv() in gflib.c */ nc = len_a+len_b+1; pcc = (int *)mxCalloc(nc, sizeof(int)); Iwork2 = (int *)mxCalloc(5+3*(np+mp), sizeof(int)); gfpconv(paa, len_a, pbb, len_b, pp, np, mp, pcc, Iwork2); } pc = mxGetPr(plhs[0]=mxCreateFull(1, nc, 0)); for(i=0; i < nc; i++){ if(pcc[i] < 0){ pc[i] = -mexGetInf(); }else{ pc[i] = (double)pcc[i]; } } return;}/*--end of GFCONV.C--*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -