📄 decode.hlp
字号:
ha_help_begin
DECODE Decodes an encoded codeword using Hamming code method.
MSG = DECODE(CODE, N, K, METHOD), METHOD = 'hamming', decodes the
binary codeword in CODE using Hamming code method. The codeword length
is N and the message length is K. The format of CODE can be either
a vector or N column matrix. Hamming code is a single error-correction
code. Its codeword length is N = 2^M-1. Its message length is N-M.
MSG = DECODE(CODE, N, K, METHOD, P_POLY), METHOD = 'hamming', specifies
the primitive polynomial used in the Hamming decode. P_POLY is a degree
N polynomial defined in GF(2).
MSG = DECODE(CODE, N, K, METHOD...), METHOD = 'hamming/decimal'
specifies that the input data in CODE is decimal integers. This
function converts the decimal integer into M bits binary before
proceeding with the decode computation, where M is the smallest integer
such that N <= 2^M-1.
[MSG, ERR, CCODE, CERR] = DECODE(...) outputs the decode message signal
MSG, the number of errors detected in ERR, the corrected codeword
CCODE, and errors found in CODE.
ha_help_end
bl_help_begin
DECODE Decodes an encoded codeword using linear block code method.
MSG = DECODE(CODE, N, K, METHOD, GEN), METHOD = 'linear', decodes the
binary codeword in CODE using linear block code method. The codeword
length is N and the message length is K. The format of CODE can be
either a vector or N column matrix. The generator matrix GEN is a
K-by-N matrix. Linear block code is a generic code. For example, You
may use HAMMGEN function to generate a generator matrix for Hamming
code.
MSG = DECODE(CODE, N, K, METHOD, GEN, TRU_TBL), METHOD = 'linear',
specifies the error-correction truth table in the linear block code.
For a single-error correction code, you can use function HTRUTHTB to
produce an error-correction truth table.
MSG = DECODE(CODE, N, K, METHOD...), METHOD = 'linear/decimal' specifies
that the input data in CODE is decimal integers. This function converts
the decimal integer into M bits binary before proceeding with the
decode computation, where M is the smallest integer such that
N <= 2^M-1.
[MSG, ERR, CCODE, CERR] = DECODE(...) outputs the decode message signal
MSG, the number of errors detected in ERR, the corrected codeword CCODE,
and errors found in CODE.
bl_help_end
cy_help_begin
DECODE Decodes an encoded codeword using cyclic code method.
MSG = DECODE(CODE, N, K, METHOD, CYC_POLY), METHOD = 'cyclic', decodes
binary codeword in CODE using cyclic code method. The codeword length
is N and the message length is K. The format of CODE can be either
a vector or N column matrix. CYC_POL is a degree N-K cyclic polynomial.
You can use function CYCLPOLY to produce the cyclic polynomial. This
format uses the default single error correction truth table.
MSG = DECODE(CODE, N, K, METHOD, CYC_POLY, TRU_TBL), METHOD = 'cyclic',
specifies the error-correction truth table in the linear block code.
For a single-error correction code, you can use function HTRUTHTB to
produce an error-correction truth table.
MSG = DECODE(CODE, N, K, METHOD...), METHOD = 'cyclic/decimal',
specifies that the input data in CODE is decimal integers. This
function converts the decimal integer into M bits binary before
proceeding with the decode computation, where M is the smallest integer
such that N <= 2^M-1.
[MSG, ERR, CCODE, CERR] = DECODE(...) outputs the decode message signal
MSG, the number of errors detected in ERR, the corrected codeword
CCODE, and errors found in corresponding to each row of CCODE.
cy_help_end
bc_help_begin
DECODE Decodes an encoded codeword using BCH code method.
MSG = DECODE(CODE, N, K, METHOD), METHOD = 'bch', decodes binary
codeword in CODE using cyclic code method. The codeword length is N and
the message length is K. The format of CODE can be either a vector or
N column matrix. Use BCHPOLY to view the valid codeword length, message
length, and error-correction capability of BCH code.
MSG = DECODE(CODE, N, K, METHOD, T), METHOD = 'bch', specifies the
error-correction capability of the BCH code.
MSG = DECODE(CODE, N, K, METHOD, T, GEN_POLY), METHOD = 'bch',
specifies the generator polynomial for the BCH code.
MSG = DECODE(CODE, N, K, METHOD...), METHOD = 'bch/decimal' specifies
that the input data in CODE is decimal integers. This function converts
the decimal integer into M bits binary before proceeding with the
decode computation, where M is the smallest integer such that
N <= 2^M-1.
[MSG, ERR, CCODE, CERR] = DECODE(...) outputs the decode message signal
MSG, the number of errors detected in ERR, the corrected codeword
CCODE, and errors in CODE.
bc_help_end
rs_help_begin
DECODE Decodes an encoded codeword using Reed-Solomon code method.
MSG = DECODE(CODE, N, K, METHOD), METHOD = 'rs', decodes the binary
codeword in CODE using Reed-Solomon code method. The codeword length
is N and the message length is K. In R-S code, N must equal to 2^M-1,
where M is an integer larger than or equal to 3. The error-correction
capability for R-S code is T = floor((N-K)/2). For efficiency, N-K
should be an even number. The format of CODE can be either a vector
or a N*M column matrix. The function generates a list of all elements
in GF(2^M) before the calculation.
MSG = DECODE(CODE, N, K, METHOD, GF_TP), METHOD = 'rs', provides all
elements in GF(2^M) for the calculation. You can use function GFTUPLE
to generate the list of all elements in GF(2^M).
MSG = DECODE(CODE, N, K, METHOD...), METHOD = 'rs/decimal' specifies
that the input data in CODE is decimal integer matrix. CODE must be an
N column matrix in this format. The decimal integer should be in range
[0, N-1].
MSG = DECODE(CODE, N, K, METHOD...), METHOD = 'rs/power' specifies
that the elements in CODE are elements in GF(2^M) in power form
(exponential form). CODE must be an N column matrix in this format. The
decimal integers should be integers not larger than N-2.
[MSG, ERR, CCODE, CERR] = DECODE(...) outputs the decode message signal
MSG, the number of errors detected in ERR, the corrected codeword
CCODE, and errors found in CODE.
rs_help_end
co_help_begin
DECODE Decodes a convolution codeword Viterbi algorithm.
MSG = DECODE(CODE, N, K, METHOD, TRAN_FUNC), METHOD = 'convolution',
decodes binary codeword in CODE using convolution code method. This
function uses Viterbi algorithm. The codeword length is N and the
message length is K. The format of CODE can be either a vector or
N column matrix. The convolution code transfer function TRAN_FUNC is
in octal form, which is a K-by-N matrix. You can use function SIM2GEN
to generate a convolution code transfer function using SIMULINK block
diagram.
MSG = DECODE(CODE, N, K, METHOD, TRAN_FUNC, DELY_LEN), METHOD =
'convolution', specifies the computation delay length in DELY_LEN. The
delay length must be an integer, which determines the longest length of
the trellis kept in memory before making the decision. If DELY_LEN is
a non-positive number or it is absent, this function uses the default
infinite delay length.
MSG = DECODE(CODE, N, K, METHOD, TRAN_FUNC, DELY_LEN, TRAN_PROB),
METHOD = 'convolution', specifies soft-decision transfer probability.
TRAN_PROB is a three row matrix. When TRAN_PROB is absent or it is not
an three row matrix, this function processes the decode using the
default hard decision.
MSG =DECODE(CODE, N, K, METHOD, TRAN_FUNC, DELY_LEN, TRAN_PROB, P_NUM),
METHOD = 'convolution', specifies the figure number in plotting the
convolution code trellis. P_NUM should be a positive integer. If P_NUM
is a non-positive number or it is absent, no trellis plot figure is
opened. The plot for the trellis figure is very expensive in
computation.
[MSG, ERR, CCODE, CERR] = DECODE(...) outputs the decode message signal
MSG, the number of errors detected in ERR, the corrected codeword
CCODE, and errors found in CODE.
co_help_end
Wes Wang 10/5/95
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -