⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fsolve2.m

📁 数字通信第四版原书的例程
💻 M
字号:
function [xf,termcode,path] = fsolve2(fvec,x0,details,fparam,jac,scale)
%FSOLVE2 Solution to a system of nonlinear equations.
%	X = FSOLVE2('f',X0) starts at X0 and produces a new vector X which
%	solves for f(x) = 0.  'f' is a string containing the name of the
%	function to be solved, normally an M-file.  For example, to
%	find the x, y, and z that solve the simultaneous equations
%
%	     sin(x) + y^2 + log(z) - 7 = 0
%	     3*x + 2^y - z^3 + 1 = 0
%	     x + y + z - 5 = 0
%
%	Use X = FSOLVE2('xyz',[1 1 1]') where XYZ is the M-file
%
%	  function q = xyz(p)
%	  x = p(1); y = p(2); z = p(3);
%	  q = zeros(3,1);
%	  q(1) = sin(x) + y^2 + log(z) - 7;
%	  q(2) = 3*x + 2^y - z^3 + 1;
%	  q(3) = x + y + z - 5;
%
%	FSOLVE2 can take many other optional parameters; see the M-file
%	for more information.

%	Copyright (c) 1988 by the MathWorks, Inc.
%	Coded in MATLAB by Richard T. Behrens, April 1988.
%	Revised 11/27/88 JNL

%  [XF,TERMCODE,PATH] = FSOLVE(FVEC,X0,DETAILS,FPARAM,JAC,SCALE)
%
%  This function is for solving systems of nonlinear equations.  For more
%  information see a users guide.
%
%  *** INPUTS ***
%  FVEC     - The name of a function which maps n-vectors into n-vectors.
%  X0       - An initial guess of a solution (starting point for iterations).
%  DETAILS  - (optional) A vector whose elements select various algorithmic
%             options and specify various tolerances.
%  FPARAM   - (optional) A set of parameters (constants) which, if nonempty,
%             is passed on as a second argument to FVEC and JAC.
%  JAC      - (optional) The name of a function which implements the Jacobian
%             matrix (if available) of the function named in FVEC.
%  SCALE    - (optional) 'Typical' values of X (1st column) and F (2nd col.)
%             for scaling purposes (no zeros in SCALE, please).
% *** OUTPUTS ***
%  XF       - The final approximation of the solution.
%  TERMCODE - (optional) Indicates the stopping reason (equals 1 for normal
%             termination).
%  PATH     - (optional) Returns the sequence of iterates.
%
%  --> NOTE:  All vectors must be column-vectors.

%  Based on Algorithm D6.1.3:  Part of the modular software system from the
%  appendix of the book "Numerical Methods for Unconstrained Optimization and
%  Nonlinear Equations" by Dennis & Schnabel, 1983.  Please refer to that book
%  if you need more detailed information about the algorithms.

% Initialization.
%
if (nargin < 3)
   details = zeros(16,1);
end
i = length(details);
if (i < 16)
   details((i+1):16,1) = zeros(16-i,1);  % For unspecified details.
end
if (nargin < 4)
   details(15) = 0;                      % No parameters to pass.
elseif ~length(fparam)
   details(15) = 0;
else
   details(15) = 1;
end
if (details(15) == 0)
   fparam = [];
end
if (nargin < 5)
   details(4) = 0;                       % No analytic Jacobian.
elseif ~length(jac)
   details(4) = 0;
end
if (details(4) == 0)
   jac = '';
end
if (nargin < 6)
   scale = [];                           % No scaling given.
   if (details(16) == 2)
      details(16) = 1;
   end
end
if (nargout < 3)
   details(14) = 0;                      % No path output.
else
   details(14) = 1;
end
if details(14), path = x0.'; end
if (details(1) == 2), btrack = []; end
nofun = 0;		% Number of function evaluations.



%
% Algorithm step 2.
%
if (details(16) > 0)     % Might need F(x0) for scaling.
   if details(15)
      [fc,FVplus,nofun] = nefn(x0,ones(length(x0),1),fvec,nofun,fparam);
   else
      [fc,FVplus,nofun] = nefn(x0,ones(length(x0),1),fvec,nofun);
   end
else
   FVplus = zeros(length(x0),1);
end
[details,Sx,SF,termcode] = neinck(x0,FVplus,details,scale);

%
% Algorithm step 3.
%
if (termcode < 0)
   xf = x0;
   if details(14), path = [path;xf.']; end
   return
end

%
% Algorithm step 4.
%
itncount = 0;

%
% Algorithm step 5.
%
if details(15)
   [fc,FVplus,nofun] = nefn(x0,SF,fvec,nofun,fparam);
else
   [fc,FVplus,nofun] = nefn(x0,SF,fvec,nofun);
end

%
% Algorithm step 6.
%
%[termcode,consecmax] = nestop0(x0,FVplus,SF,details(8));
consecmax = 0;
if (max(SF .* abs(FVplus)) <= 1E-2 * details(8))
   termcode = 1;
else
   termcode = 0;
end

%
% Algorithm step 7.
%
if (termcode > 0)
   xf = x0;
   if (details(14)), path = [path;xf.']; end
else
   if details(4)
      if details(15)
         [Jc,tmp] = feval(jac,x0,fparam);
      else
         [Jc,tmp] = feval(jac,x0);
      end           
		nofun = tmp + nofun;
   else
      [Jc,nofun] = nefdjac(fvec,FVplus,x0,Sx,details,nofun,fparam);
   end
   gc = Jc' * (FVplus .* (SF.^2));
   FVc = FVplus;
end

%
% Algorithm step 8.
%
xc = x0;

%
% Algorithm step 9.
%
restart = 1;
norest = 0;

%
% Algorithm step 10 (iteration).
%
if (details(1) > 0), clc, end
while (termcode == 0)
   itncount = itncount + 1;
   if (details(4) | details(3) | (1-details(5)))
      [M,Hc,sN] = nemodel(FVc,Jc,gc,SF,Sx,details(2));
   else
      error('Factored model not implemented.')
%     [] = nemodfac();
   end
   if (details(2) == 1)
      [retcode,xplus,fplus,FVplus,maxtaken,nofun,btrack] = ...
      nelnsrch(xc,fc,fvec,gc,sN,Sx,SF,details,nofun,btrack,fparam);
   elseif (details(2) == 2)
      error('Hookstep not implemented.')
%     [] = nehookst();
   else
      error('Dogleg not implemented.')
%     [] = nedogdrv();
   end
   if ((retcode ~= 1) | (restart) | (details(4)) | (details(3)))
      if (details(4))
         if details(15)
            [Jc,tmp] = feval(jac,xplus,fparam);
         else
            [Jc,tmp] = feval(jac,xplus);
         end
			nofun = tmp + nofun;
      elseif (details(3))
         [Jc,nofun] = nefdjac(fvec,FVplus,xplus,Sx,details,nofun,fparam);
      elseif (details(5))
         error('Factored secant method not implemented.')
%        [] = nebroyf();
      else
         Jc = nebroyuf(Jc,xc,xplus,FVc,FVplus,Sx,details(13));  % Broyden update
      end
      if (details(5))
         error('Gradient calculation for factored method not implemented.')
         % Calculate gc using QR factorization (see book).
      else
         gc = Jc' * (FVplus .* (SF.^2));
      end
      [consecmax,termcode] = nestop(xc,xplus,FVplus,fplus,gc,Sx,SF,retcode, ...
                                details,itncount,maxtaken,consecmax);
   end
   if (((retcode == 1) | (termcode == 2)) & (1-restart) & ...
                                     (1-details(4)) & (1-details(3)))
      [Jc,nofun] = nefdjac(fvec,FVc,xc,Sx,details,nofun,fparam);
      gc = Jc' * (FVc .* (SF.^2));
      if ((details(2) == 2) | (details(2) == 3))
         details(7) = -1;
      end
      restart = 1;
      norest = norest + 1;
   else
      if (termcode > 0)
         xf = xplus;
         if (details(14)), path = [path;xf.']; end
      else
         restart = 0;
         if (details(14)), path = [path;xplus.']; end
      end
      xc = xplus;
      fc = fplus;
      FVc = FVplus;
      if (details(1) > 0)
         home
         disp('The current iteration is: ')
         xc
      end
   end
end

if (details(1) == 2)
   disp('Press CR to see statistics . . .')
   fprintf([' ',7])
   pause

   clc
   format compact
   disp('Function: ')
   fvec
   disp('Starting point: ')
   x0.'
   disp('Termination condition: ')
   termcode
   disp('Number of iterations: ')
   itncount
   disp('Total number of function evaluations: ')
   nofun
   disp('Final norm(F(x)): ')
   norm(FVc)
   if ((1-details(3)) & (1-details(4)))
      disp('Number of restarts for secant methods: ')
      norest
   end
   disp('Backtrack information: ')
   btrack
   pause
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -