📄 dfildemo.m
字号:
%DFILDEMO Nonlinear filter design problem using discrete optimization.
clf
echo on
% Example script-file for the design of finite precision filters
nbits = 8; % How many bits have we to realize filter
maxbin = 2^nbits-1; % Maximum number
n=4; % Number of coefficients (Order of filter plus 1)
Wn = 1.5; % Cut-off frequency for filter
Rp = 0.2; % Decibels of ripple in the passband
w = 128; % Number of frequency points to take
% Continuous filter design
% (could use any of cheby, ellip, yulewalk or remez here.)
[b1,a1]=cheby1(n-1,Wn, Rp);
pause % Strike any key to continue
[h,w]=freqz(b1,a1,w); % Frequency response
h=abs(h); % Magnitude response
plot(w, h), title('Frequency response using non-integer variables')
x = [b1,a1]; % The design variables
% Set bounds on the maximum and minimum values.
if (any(x < 0))
% If there are negative coefficients - must use sign bit
maxbin = floor(maxbin/2);
vlb = -maxbin * ones(1, 2*n);
vub = maxbin * ones(1, 2*n);
else
% otherwise, all positive
vlb = zeros(1,2*n);
vub = maxbin * ones(1, 2*n);
end
% Set the biggest value equal to maxbin.
[m, mix] = max(abs(x));
factor = maxbin/m;
x = factor * x; % Rescale other filter coefficients
xorig = x;
xmask = 1:2*n;
% Remove the biggest value and the element that controls D.C. Gain
% from the list of values that can be changed.
xmask([mix]) = [];
nx = 2*n;
pause % Strike any key to continue
% Set termination criteria to reasonably high values
% to promote fast convergence.
options = 1;
options(2) = 0.1;
options(3) = 1e-4;
options(4) = 1e-6;
% Need to minimize absolute maximum values so set options(15) to the
% number of frequency points.
if length(w) == 1
options(15) = w;
else
options(15) = length(w);
end
pause % Strike any key to continue
% Discretize and eliminate first value
[x, xmask] = elimone(x, xmask, h, w, n, maxbin)
pause % Strike any key to continue
niters = length(xmask);
pause % Strike any key to continue
disp(sprintf('Performing %g stages of optimization.\n\n', niters));
% This may take a long time ! (Ctrl-C to abort)
for m = 1:niters
disp(sprintf('Stage: %g \n', m));
% Least squares solution:
% x(xmask) = constr('filtfun2', x(xmask), options, vlb(xmask), vub(xmask), [], x, xmask, n, h, maxbin);
x(xmask) = minimax('filtfun', x(xmask), options, vlb(xmask), vub(xmask), [], x, xmask, n, h, maxbin);
[x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
% Check nearest integer values for better filter
pause % Strike any key to continue
xold = x;
xmask = 1:2*n;
xmask([n+1, mix]) = [];
x = x + 0.5;
for i = xmask
[x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
xmask = 1:2*n;
xmask([n+1, mix]) = [];
x= x - 0.5;
for i = xmask
[x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
if any(abs(x) > maxbin), x = xold; end
% Frequency response of filter
pause % Strike any key to continue
subplot(211)
bo = x(1:n);
ao = x(n+1:2*n);
h2 = abs(freqz(bo,ao,128));
plot(w,h,w,h2,'o')
title('Optimized filter versus original')
% Compare it to a filter where the coefficients are just rounded
% up or down.
xround =round(xorig)
b = xround(1:n);
a = xround(n+1:2*n);
h3 = abs(freqz(b,a,128));
subplot(212)
plot(w,h,w,h3,'+')
title('Rounded filter versus original')
set(gcf,'NextPlot','replace')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -