📄 lqrd.m
字号:
function [k,s,e] = lqrd(a,b,q,r,nn,Ts)
%LQRD Discrete linear quadratic regulator design from continuous
% cost function.
% [K,S,E] = LQRD(A,B,Q,R,Ts) calculates the optimal feedback gain
% matrix K such that the discrete feedback law u[n] = -K x[n]
% minimizes a discrete cost function equivalent to the continuous
% cost function
% J = Integral {x'Qx + u'Ru} dt
% .
% subject to the continuous constraint equation: x = Ax + Bu
%
% Also returned is S, the discrete Riccati equation solution, and
% the closed loop eigenvalues E = EIG(Ad-Bd*K).
%
% The gain matrix is determined by discretizing the continuous plant
% (A,B,C,D) and continuous weighting matrices (Q,R) using the sample
% time Ts and the zero order hold approximation. The gain matrix is
% then calculated using DLQR.
%
% [K,S,E] = LQRD(A,B,Q,R,N,Ts) includes the cross-term N that
% relates u to x in the cost function.
% J = Integral {x'Qx + u'Ru + 2*x'Nu}
%
% See also: C2D, LQED, DLQR, and LQR.
% Clay M. Thompson 7-16-90
% Copyright (c) 1986-93 by the MathWorks, Inc.
% Reference: This routine is based on the routine JDEQUIV.M by Franklin,
% Powell and Workman and is described on pp. 439-441 of "Digital Control
% of Dynamic Systems".
error(nargchk(5,6,nargin));
error(abcdchk(a,b));
[nx,na] = size(a);
[nb,nu] = size(b);
[nq,mq] = size(q);
if (nx ~= nq) | (nx ~= mq), error('A and Q must be the same size.'); end
[nr,mr] = size(r);
if (mr ~= nr) | (nu ~= mr), error('B and R must be consistent.'); end
if nargin==5,
Ts = nn;
nn = zeros(nb,nu);
else
[nnn,mn] = size(nn);
if (nnn ~= nx) | (mn ~= nu), error('N must be consistent with Q and R.'); end
end
% Check if q is positive semi-definite and symmetric
if any(eig(q) < -eps) | (norm(q'-q,1)/norm(q,1) > eps)
disp('Warning: Q is not symmetric and positive semi-definite');
end
% Check if r is positive definite and symmetric
if any(eig(r) <= -eps) | (norm(r'-r,1)/norm(r,1) > eps)
disp('Warning: R is not symmetric and positive definite');
end
% Discretize the state-space system.
[ad,bd] = c2d(a,b,Ts);
% --- Determine discrete equivalent of continuous cost function ---
n = nx+nu;
Za = zeros(nx); Zb = zeros(nx,nu); Zu = zeros(nu);
M = [ -a' Zb q nn
-b' Zu nn' r
Za Zb a b
Zb' Zu Zb' Zu];
phi = expm(M*Ts);
phi12 = phi(1:n,n+1:2*n);
phi22 = phi(n+1:2*n,n+1:2*n);
QQ = phi22'*phi12;
QQ = (QQ+QQ')/2; % Make sure QQ is symmetric
Qd = QQ(1:nx,1:nx);
Rd = QQ(nx+1:n,nx+1:n);
Nd = QQ(1:nx,nx+1:n);
% Design the gain matrix using the discrete plant and discrete cost function
[k,s,e] = dlqr(ad,bd,Qd,Rd,Nd);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -