📄 lqed.m
字号:
function [l,m,p,e] = lqed(a,g,c,q,r,Ts)
%LQED Discrete linear quadratic estimator design from continuous
% cost function.
% [L,M,P,E] = LQED(A,G,C,Q,R,Ts) calculates the Kalman gain matrix L
% that minimizes the discrete estimation error equivalent to the
% estimation error from the continuous system:
% .
% x = Ax + Bu + Gw
% y = Cx + Du + v
%
% with process and measurement noise:
% E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
%
% Also returned is the discrete Riccati solution M, the estimate
% error covariance after the measurement update P, and the discrete
% closed loop loop eigenvalues E = EIG(Ad-Ad*L*Cd).
%
% The gain matrix is determined by discretizing the continuous plant
% (A,B,C,D) and continuous covariance matrices (Q,R) using the
% sample time Ts and the zero order hold approximation. The gain
% matrix is then calculated using DLQE.
%
% See also: C2D, LQRD, DLQE, and LQE.
% Clay M. Thompson 7-18-90
% Copyright (c) 1986-93 by the MathWorks, Inc.
% Reference: This routine is based on the routine DISRW.M by Franklin,
% Powell and Workman and is described on pp. 454-455 of "Digital Control
% of Dynamic Systems".
error(nargchk(6,7,nargin));
error(abcdchk(a,g,c));
[nx,nu] = size(g);
[ny,nx] = size(c);
[nq,mq] = size(q);
if (mq ~= nq) | (nu ~= mq), error('G and Q must be consistent.'); end
[nr,mr] = size(r);
if (mr ~= nr) | (ny ~= mr), error('C and R must be consistent.'); end
% Check if q is positive semi-definite and symmetric
if any(eig(q) < -eps) | (norm(q'-q,1)/norm(q,1) > eps)
disp('Warning: Q is not symmetric and positive semi-definite');
end
% Check if r is positive definite and symmetric
if any(eig(r) <= -eps) | (norm(r'-r,1)/norm(r,1) > eps)
disp('Warning: R is not symmetric and positive definite');
end
% Discretize the state-space system.
[ad,gd] = c2d(a,g,Ts);
% --- Compute discrete equivalent of continuous noise ---
Za = zeros(nx);
M = [ -a g*q*g'
Za a' ];
phi = expm(M*Ts);
phi12 = phi(1:nx,nx+1:2*nx);
phi22 = phi(nx+1:2*nx,nx+1:2*nx);
Qd = phi22'*phi12;
Qd = (Qd+Qd')/2; % Make sure Qd is symmetric
Rd = r/Ts;
% Design the gain matrix using the discrete plant and discrete cost function
[l,m,p,e] = dlqe(ad,eye(nx),c,Qd,Rd);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -