📄 perpxy.m
字号:
function [x4,y4] = perpxy(x1,y1,x2,y2,x3,y3)
% PERPXY Finds a point [xp,yp] which is the nearest point from
% [x3,y3] on the straight line formed between [x1,x2] and
% [x2,y2].
%
% [xp,yp]=perpxy(x1,y1,x2,y2,x3,y3)
%
% Returns points [x4,y4] which are perpendicular to the
% the straight line formed between the points
% points [x1,y1] and [x2,y2], starting from the points
% [x3,y3]:
%
% .[x1,y1]
%
%
%
% .[x4,y4]
% .[x3,y3]
%
%
% .[x2,y2]
%
% i.e. (x3-x4)*(x1-x2) + (y3-y4)*(y1-y2) = 0
% (x1-x4)*(y4-y2) - (x4-x2)*(y1-y4) = 0
% Copyright (c) 1986-93 by the MathWorks, Inc.
% Cater for the case when the line has infinite gradient:
xeq=abs(x1-x2)<1e-10;
x12=(x1-x2)+eps*(xeq);
y12=(y1-y2);
x4=(x12.*(-x3.*x12-y3.*y12) + y12.*(x1.*y2-x2.*y1))./(-x12.*x12 - y12.*y12);
y4=(x1.*y2 + x4.*y12 - x2.*y1)./(x12);
y4=y4.*(~xeq)+y3.*(xeq);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -