📄 lqew.m
字号:
function [l,p,e] = lqew(a,g,c,j,q,r)
%LQEW Linear quadratic estimator design for the continuous-time
% system with process noise feedthrough
% .
% x = Ax + Bu + Gw {State equation}
% z = Cx + Du + Jw + v {Measurements}
%
% and with process noise and measurement noise covariances:
% E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
%
% L = LQEW(A,G,C,J,Q,R) returns the gain matrix L such that the
% stationary Kalman filter: .
% x = Ax + Bu + L(z - Cx - Du)
%
% produces an LQG optimal estimate of x. The estimator can be formed
% with ESTIM.
%
% [L,P,E] = LQEW(A,G,C,J,Q,R) returns the gain matrix L, the Riccati
% equation solution P which is the estimate error covariance, and
% the closed loop eigenvalues of the estimator: E = EIG(A-L*C).
%
% See also: LQE, LQE2, and ESTIM.
% Clay M. Thompson 7-23-90
% Copyright (c) 1986-93 by the MathWorks, Inc.
error(nargchk(6,6,nargin));
rr = r + j*q*j';
nn = q*j';
[l,p,e] = lqe(a,g,c,q,rr,nn);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -