⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 timvec.m

📁 数字通信第四版原书的例程
💻 M
字号:
function t=timvec(a,b,c,x0,st,precision)
%TIMVEC Returns a time vector for use with time response functions.
%
%	T=TIMVEC(a,b,c,X0,ST,PRECISION) returns a time vector T
%	for use with state space systems (a,b,c) that have known 
%	initial conditions X0. The time vector can be used,
%	for instance, for step and impulse responses. 
%	
%	TIMVEC attempts to produce a vector that ensures the 
%	output responses have decayed to approx. ST % of their initial 
%	or peak values. 
%
%	More points are used for rapidly changing systems. 
%	Nominal point resolution is determined by setting PRECISION
%	(a good value is 30 points). For more resolution set PRECISION
%	to, for example, 50. 

%	A.C.W.Grace 9-21-89
%	Copyright (c) 1986-93 by the MathWorks, Inc.

	if nargin<6, precision = 30; end
	if nargin<5, st = 0.005; end
	if nargin<4, x0 = ones(length(a),1); end
	[r,n]=size(c);
% Work out scale factors by looking at d.c. gain, 
% eigenvectors and eigenvalues of the system.
	[m,r]=eig(a);
	r=diag(r);

% Equate the  responses to the sum of a set of 
% exponentials(r) multiplied by a vector of magnitude terms(vec).
	[r1,n]=size(c);
	if r1>1, c1=max(abs(c)); else c1=c; end
% Cater for the case when m is singular
	if rcond(m)<eps 
		vec = (c1*m).'.*(1e4*ones(n,1)); 
	else 
		vec=(c1*m).'.*(m\x0);
	end
% Cater for the case when poles and zeros cancel each other out:
	vec=vec+1e-20*(vec==0);
% Cater for the case when eigenvectors are singular:
% d.c. gain (not including d matrix)
	dcgain=c1*x0; % or dcgain =real(sum(vec)) or dcgain=-c(iu,:)/a*b  
% If the d.c gain is small then base the scaling
% factor on the estimated maximum peak in the response.
	if abs(dcgain)<1e-8
% Estimation of the maximum peak in the response.
		estt=(atan2(imag(vec),real(vec))./(imag(r)+eps*(imag(r)==0)))';
% Next line caters for unstable systems .
		estt=(estt<1e12).*estt+(estt>1e12)+(estt==0);
		peak=vec.'*exp(r*abs(estt));
		pk=max([abs(dcgain);abs(peak');eps]);
	else
		pk=dcgain;
	end
	if ~finite(pk), pk = 1/eps; end
% Work out the st% settling time for the responses.
% (or st% peak value settling time for low d.c. gain systems).
	lt=(st*pk./(abs(vec).*(1+(imag(r)~=0))));
% The addition of (r==0) and 0.01*(real(r)==0) below, 
% fixes problem for pure integrators and purely imaginary systems.
	t1=real(log(lt))./(real(r)+(r==0)+0.1*imag(r).*(real(r)==0));
	ts=max(t1);
% Next line is just in case numerical problems are encountered
	if ts<=0, ts=max(abs(t1))+eps; end
% Round the maximum time to an appropriate value for plotting.
	tsn=chop(ts,1,5);
	if abs((ts-tsn)/ts)>0.2, 
		tsn=chop(ts,1,1);
		if abs((ts-tsn)/ts)>0.2
			tsn=chop(ts,2,2);
		end
	end
	ts=tsn;
% Calculate the  number of points to take for the response.
% The first part of this calculation is based on the speed 
% and magnitude of the real eigenvalues.
% The second part is concerned with the oscillatory part of the
% response (imaginary eigenvalues).
% The factors in the imaginary calculation are the damping ratio, the
% residues, the frequency and the final time.         
	r=r+(real(r)==0); % Purely imaginary roots and integrators
	vec = vec + eps*(real(vec)==0); % Can occur with purely imaginary zeros 
	npts=round(max(abs(precision/5*real(vec)./max(abs(real(vec)))*ts.*real(r)) ...
		+ precision/2*(log(1+abs(vec./(pk).*( imag(r)./real(r) ).* imag(r)/pi))*ts)));
	if npts>precision*30, npts=precision*30; end
	t=0:ts/npts:ts;      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -