📄 timvec.m
字号:
function t=timvec(a,b,c,x0,st,precision)
%TIMVEC Returns a time vector for use with time response functions.
%
% T=TIMVEC(a,b,c,X0,ST,PRECISION) returns a time vector T
% for use with state space systems (a,b,c) that have known
% initial conditions X0. The time vector can be used,
% for instance, for step and impulse responses.
%
% TIMVEC attempts to produce a vector that ensures the
% output responses have decayed to approx. ST % of their initial
% or peak values.
%
% More points are used for rapidly changing systems.
% Nominal point resolution is determined by setting PRECISION
% (a good value is 30 points). For more resolution set PRECISION
% to, for example, 50.
% A.C.W.Grace 9-21-89
% Copyright (c) 1986-93 by the MathWorks, Inc.
if nargin<6, precision = 30; end
if nargin<5, st = 0.005; end
if nargin<4, x0 = ones(length(a),1); end
[r,n]=size(c);
% Work out scale factors by looking at d.c. gain,
% eigenvectors and eigenvalues of the system.
[m,r]=eig(a);
r=diag(r);
% Equate the responses to the sum of a set of
% exponentials(r) multiplied by a vector of magnitude terms(vec).
[r1,n]=size(c);
if r1>1, c1=max(abs(c)); else c1=c; end
% Cater for the case when m is singular
if rcond(m)<eps
vec = (c1*m).'.*(1e4*ones(n,1));
else
vec=(c1*m).'.*(m\x0);
end
% Cater for the case when poles and zeros cancel each other out:
vec=vec+1e-20*(vec==0);
% Cater for the case when eigenvectors are singular:
% d.c. gain (not including d matrix)
dcgain=c1*x0; % or dcgain =real(sum(vec)) or dcgain=-c(iu,:)/a*b
% If the d.c gain is small then base the scaling
% factor on the estimated maximum peak in the response.
if abs(dcgain)<1e-8
% Estimation of the maximum peak in the response.
estt=(atan2(imag(vec),real(vec))./(imag(r)+eps*(imag(r)==0)))';
% Next line caters for unstable systems .
estt=(estt<1e12).*estt+(estt>1e12)+(estt==0);
peak=vec.'*exp(r*abs(estt));
pk=max([abs(dcgain);abs(peak');eps]);
else
pk=dcgain;
end
if ~finite(pk), pk = 1/eps; end
% Work out the st% settling time for the responses.
% (or st% peak value settling time for low d.c. gain systems).
lt=(st*pk./(abs(vec).*(1+(imag(r)~=0))));
% The addition of (r==0) and 0.01*(real(r)==0) below,
% fixes problem for pure integrators and purely imaginary systems.
t1=real(log(lt))./(real(r)+(r==0)+0.1*imag(r).*(real(r)==0));
ts=max(t1);
% Next line is just in case numerical problems are encountered
if ts<=0, ts=max(abs(t1))+eps; end
% Round the maximum time to an appropriate value for plotting.
tsn=chop(ts,1,5);
if abs((ts-tsn)/ts)>0.2,
tsn=chop(ts,1,1);
if abs((ts-tsn)/ts)>0.2
tsn=chop(ts,2,2);
end
end
ts=tsn;
% Calculate the number of points to take for the response.
% The first part of this calculation is based on the speed
% and magnitude of the real eigenvalues.
% The second part is concerned with the oscillatory part of the
% response (imaginary eigenvalues).
% The factors in the imaginary calculation are the damping ratio, the
% residues, the frequency and the final time.
r=r+(real(r)==0); % Purely imaginary roots and integrators
vec = vec + eps*(real(vec)==0); % Can occur with purely imaginary zeros
npts=round(max(abs(precision/5*real(vec)./max(abs(real(vec)))*ts.*real(r)) ...
+ precision/2*(log(1+abs(vec./(pk).*( imag(r)./real(r) ).* imag(r)/pi))*ts)));
if npts>precision*30, npts=precision*30; end
t=0:ts/npts:ts;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -