📄 lqr.m
字号:
function [k,s,e]=lqr(a,b,q,r,nn)
%LQR Linear quadratic regulator design for continuous systems.
% [K,S,E] = LQR(A,B,Q,R) calculates the optimal feedback gain
% matrix K such that the feedback law u = -Kx minimizes the cost
% function:
% J = Integral {x'Qx + u'Ru} dt
%
% subject to the constraint equation:
% .
% x = Ax + Bu
%
% Also returned is S, the steady-state solution to the associated
% algebraic Riccati equation and the closed loop eigenvalues E:
% -1
% 0 = SA + A'S - SBR B'S + Q E = EIG(A-B*K)
%
% [K,S,E] = LQR(A,B,Q,R,N) includes the cross-term N that relates
% u to x in the cost function.
%
% J = Integral {x'Qx + u'Ru + 2*x'Nu}
%
% The controller can be formed with REG.
%
% See also: LQRY, LQR2, and REG.
% J.N. Little 4-21-85
% Revised 8-27-86 JNL
% Revised 7-18-90 Clay M. Thompson
% Copyright (c) 1986-93 by the MathWorks, Inc.
error(nargchk(4,5,nargin));
error(abcdchk(a,b));
if ~length(a) | ~length(b)
error('A and B matrices cannot be empty.')
end
[m,n] = size(a);
[mb,nb] = size(b);
[mq,nq] = size(q);
if (m ~= mq) | (n ~= nq)
error('A and Q must be the same size');
end
[mr,nr] = size(r);
if (mr ~= nr) | (nb ~= mr)
error('B and R must be consistent');
end
if nargin == 5
[mn,nnn] = size(nn);
if (mn ~= m) | (nnn ~= nr)
error('N must be consistent with Q and R');
end
% Add cross term
q = q - nn/r*nn';
a = a - b/r*nn';
else
nn = zeros(m,nb);
end
% Check if q is positive semi-definite and symmetric
nq = norm(q,1);
if any(eig(q) < -eps*nq) | (norm(q'-q,1)/nq > eps)
disp('Warning: Q is not symmetric and positive semi-definite');
end
% Check if r is positive definite and symmetric
nr = norm(r,1);
if any(eig(r) <= -eps*nr) | (norm(r'-r,1)/nr > eps)
disp('Warning: R is not symmetric and positive definite');
end
% Start eigenvector decomposition by finding eigenvectors of Hamiltonian:
[v,d] = eig([a b/r*b';q, -a']);
d = diag(d);
[e,index] = sort(real(d)); % sort on real part of eigenvalues
if (~( (e(n)<0) & (e(n+1)>0) ))
error('Can''t order eigenvalues, (A,B) may be uncontrollable.');
else
e = d(index(1:n)); % Return closed-loop eigenvalues
end
chi = v(1:n,index(1:n)); % select vectors with negative eigenvalues
lambda = v((n+1):(2*n),index(1:n));
s = -real(lambda/chi);
k = r\(nn'+b'*s);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -