📄 lqe.m
字号:
function [l,p,e] = lqe(a,g,c,q,r,t)
%LQE Linear quadratic estimator design. For the continuous-time system:
% .
% x = Ax + Bu + Gw {State equation}
% z = Cx + Du + v {Measurements}
% with process noise and measurement noise covariances:
% E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
%
% L = LQE(A,G,C,Q,R) returns the gain matrix L such that the
% stationary Kalman filter:
% .
% x = Ax + Bu + L(z - Cx - Du)
%
% produces an LQG optimal estimate of x. The estimator can be formed
% with ESTIM.
%
% [L,P,E] = LQE(A,G,C,Q,R) returns the gain matrix L, the Riccati
% equation solution P which is the estimate error covariance, and
% the closed loop eigenvalues of the estimator: E = EIG(A-L*C).
%
% [L,P,E] = LQE(A,G,C,Q,R,N) solves the estimator problem when the
% process and sensor noise is correlated: E{wv'} = N.
%
% See also: LQEW, LQE2, and ESTIM.
% J.N. Little 4-21-85
% Revised Clay M. Thompson 7-16-90
% Copyright (c) 1986-93 by the MathWorks, Inc.
error(nargchk(5,6,nargin));
% Calculate estimator gains using LQR and duality:
if nargin==5
[k,s,e] = lqr(a',c',g*q*g',r);
else
[k,s,e] = lqr(a',c',g*q*g',r,g*t);
end
l=k';
p=s';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -