📄 dlqew.m
字号:
function [l,m,p,e] = dlqew(a,g,c,j,q,r)
%DLQEW Discrete linear quadratic estimator design for the system:
% x[n+1] = Ax[n] + Bu[n] + Gw[n] {State equation}
% z[n] = Cx[n] + Du[n] + Jw[n] + v[n] {Measurements}
% with process noise and measurement noise covariances:
% E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
%
% L = DLQEW(A,G,C,J,Q,R) returns the gain matrix L such that the
% discrete, stationary Kalman filter with time and observation
% update equations:
% _ * * _ _
% x[n+1] = Ax[n] + Bu[n] x[n] = x[n] + L(z[n] - Cx[n] - Du[n])
% produces an LQG optimal estimate of x. The estimator can be
% formed using DESTIM.
%
% [L,M,P,E] = DLQEW(A,G,C,J,Q,R) returns the gain matrix L, the
% Riccati equation solution M, the estimate error covariance after
% the measurement update: * *
% P = E{[x-x][x-x]'}
% and the closed-loop eigenvalues of the estimator, E=EIG(A-A*L*C).
%
% See also: DLQE, LQED and DESTIM.
% Clay M. Thompson 7-23-90
% Copyright (c) 1986-93 by the MathWorks, Inc.
error(nargchk(6,6,nargin));
rr = r + j*q*j';
nn = q*j';
[l,m,p,e] = dlqe(a,g,c,q,rr,nn);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -